Current Differential Protection for Active Distribution Networks Based on Improved Fault Data Self-Synchronization Method

The uncertainty in the direction and magnitude of fault current is a thorny issue for active distribution network (ADN) protection. Current differential protection (CDP) is suitable for ADN with complex operating modes and multiple types of DGs. However, the data synchronization conditions in transm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2022-01, Vol.13 (1), p.166-178
Hauptverfasser: Zhou, Chenghan, Zou, Guibin, Zang, Lindong, Du, Xiaogong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 1
container_start_page 166
container_title IEEE transactions on smart grid
container_volume 13
creator Zhou, Chenghan
Zou, Guibin
Zang, Lindong
Du, Xiaogong
description The uncertainty in the direction and magnitude of fault current is a thorny issue for active distribution network (ADN) protection. Current differential protection (CDP) is suitable for ADN with complex operating modes and multiple types of DGs. However, the data synchronization conditions in transmission lines are usually not available in distribution systems with relatively low investment levels. Fault data self-synchronization (FDSS) algorithm is a low-cost data synchronization method specially used for the protection of distribution networks, but there will be large time synchronization errors under some extreme fault conditions. In this paper, the inherent defect of the conventional FDSS algorithm is first analyzed. Then an improved FDSS algorithm is proposed, which uses the current zero-crossing time and current slope polarity to estimate the starting delay difference at both terminals. On this basis, a corresponding CDP scheme is proposed. Compared with traditional CDP, the proposed scheme does not require additional synchronization equipment and high communication bandwidth. Finally, an ADN simulation model was built using PSCAD, and the improved FDSS algorithm program was implemented in MATLAB. Test results prove that the improved FDSS algorithm can effectively reduce the time synchronization error, and the corresponding CDP scheme is effective under various fault conditions.
doi_str_mv 10.1109/TSG.2021.3116608
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2613373019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9552944</ieee_id><sourcerecordid>2613373019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e4c4be572f71d363e70356b07a4ba29b7652becd7b4a4ce029a2c51970e6a37e3</originalsourceid><addsrcrecordid>eNo9UE1PAjEU3BhNJMjdxMsmnhf7ta09IgqS4EcCnptu921YhC22XQz-estHeJc3mczMe5kkucWojzGSD_PZuE8QwX2KMefo8SLpYMlkRhHHl2ec0-uk5_0SxaGUciI7yW7YOgdNSJ_rqoI9qvUq_XQ2gAm1bdLKunQQ4RaixAdXF-2Bf4fwa923T5-0hzKNzGS9cXYb8Ui3qxiog05nsKqy2a4xC2eb-k8frG8QFra8Sa4qvfLQO-1u8jV6mQ9fs-nHeDIcTDNDJA4ZMMMKyAWpBC4ppyAQzXmBhGaFJrIQPCcFmFIUTDMDiEhNTI6lQMA1FUC7yf0xN37304IPamlb18STinBMqaAIy6hCR5Vx1nsHldq4eq3dTmGk9h2r2LHad6xOHUfL3dFSA8BZLvOcSMboPxOMeTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613373019</pqid></control><display><type>article</type><title>Current Differential Protection for Active Distribution Networks Based on Improved Fault Data Self-Synchronization Method</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Chenghan ; Zou, Guibin ; Zang, Lindong ; Du, Xiaogong</creator><creatorcontrib>Zhou, Chenghan ; Zou, Guibin ; Zang, Lindong ; Du, Xiaogong</creatorcontrib><description>The uncertainty in the direction and magnitude of fault current is a thorny issue for active distribution network (ADN) protection. Current differential protection (CDP) is suitable for ADN with complex operating modes and multiple types of DGs. However, the data synchronization conditions in transmission lines are usually not available in distribution systems with relatively low investment levels. Fault data self-synchronization (FDSS) algorithm is a low-cost data synchronization method specially used for the protection of distribution networks, but there will be large time synchronization errors under some extreme fault conditions. In this paper, the inherent defect of the conventional FDSS algorithm is first analyzed. Then an improved FDSS algorithm is proposed, which uses the current zero-crossing time and current slope polarity to estimate the starting delay difference at both terminals. On this basis, a corresponding CDP scheme is proposed. Compared with traditional CDP, the proposed scheme does not require additional synchronization equipment and high communication bandwidth. Finally, an ADN simulation model was built using PSCAD, and the improved FDSS algorithm program was implemented in MATLAB. Test results prove that the improved FDSS algorithm can effectively reduce the time synchronization error, and the corresponding CDP scheme is effective under various fault conditions.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2021.3116608</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active distribution network ; Algorithms ; Communications equipment ; current differential protection ; Current measurement ; Delays ; distributed generation ; Distribution networks ; Fault currents ; fault data self-synchronization ; Global Positioning System ; Relays ; slope polarity ; Synchronization ; Time synchronization ; Transmission lines ; zero-crossing-point</subject><ispartof>IEEE transactions on smart grid, 2022-01, Vol.13 (1), p.166-178</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e4c4be572f71d363e70356b07a4ba29b7652becd7b4a4ce029a2c51970e6a37e3</citedby><cites>FETCH-LOGICAL-c291t-e4c4be572f71d363e70356b07a4ba29b7652becd7b4a4ce029a2c51970e6a37e3</cites><orcidid>0000-0001-6267-9993 ; 0000-0003-4425-9236 ; 0000-0001-6935-8076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9552944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9552944$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Chenghan</creatorcontrib><creatorcontrib>Zou, Guibin</creatorcontrib><creatorcontrib>Zang, Lindong</creatorcontrib><creatorcontrib>Du, Xiaogong</creatorcontrib><title>Current Differential Protection for Active Distribution Networks Based on Improved Fault Data Self-Synchronization Method</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>The uncertainty in the direction and magnitude of fault current is a thorny issue for active distribution network (ADN) protection. Current differential protection (CDP) is suitable for ADN with complex operating modes and multiple types of DGs. However, the data synchronization conditions in transmission lines are usually not available in distribution systems with relatively low investment levels. Fault data self-synchronization (FDSS) algorithm is a low-cost data synchronization method specially used for the protection of distribution networks, but there will be large time synchronization errors under some extreme fault conditions. In this paper, the inherent defect of the conventional FDSS algorithm is first analyzed. Then an improved FDSS algorithm is proposed, which uses the current zero-crossing time and current slope polarity to estimate the starting delay difference at both terminals. On this basis, a corresponding CDP scheme is proposed. Compared with traditional CDP, the proposed scheme does not require additional synchronization equipment and high communication bandwidth. Finally, an ADN simulation model was built using PSCAD, and the improved FDSS algorithm program was implemented in MATLAB. Test results prove that the improved FDSS algorithm can effectively reduce the time synchronization error, and the corresponding CDP scheme is effective under various fault conditions.</description><subject>Active distribution network</subject><subject>Algorithms</subject><subject>Communications equipment</subject><subject>current differential protection</subject><subject>Current measurement</subject><subject>Delays</subject><subject>distributed generation</subject><subject>Distribution networks</subject><subject>Fault currents</subject><subject>fault data self-synchronization</subject><subject>Global Positioning System</subject><subject>Relays</subject><subject>slope polarity</subject><subject>Synchronization</subject><subject>Time synchronization</subject><subject>Transmission lines</subject><subject>zero-crossing-point</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1PAjEU3BhNJMjdxMsmnhf7ta09IgqS4EcCnptu921YhC22XQz-estHeJc3mczMe5kkucWojzGSD_PZuE8QwX2KMefo8SLpYMlkRhHHl2ec0-uk5_0SxaGUciI7yW7YOgdNSJ_rqoI9qvUq_XQ2gAm1bdLKunQQ4RaixAdXF-2Bf4fwa923T5-0hzKNzGS9cXYb8Ui3qxiog05nsKqy2a4xC2eb-k8frG8QFra8Sa4qvfLQO-1u8jV6mQ9fs-nHeDIcTDNDJA4ZMMMKyAWpBC4ppyAQzXmBhGaFJrIQPCcFmFIUTDMDiEhNTI6lQMA1FUC7yf0xN37304IPamlb18STinBMqaAIy6hCR5Vx1nsHldq4eq3dTmGk9h2r2LHad6xOHUfL3dFSA8BZLvOcSMboPxOMeTk</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Zhou, Chenghan</creator><creator>Zou, Guibin</creator><creator>Zang, Lindong</creator><creator>Du, Xiaogong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6267-9993</orcidid><orcidid>https://orcid.org/0000-0003-4425-9236</orcidid><orcidid>https://orcid.org/0000-0001-6935-8076</orcidid></search><sort><creationdate>202201</creationdate><title>Current Differential Protection for Active Distribution Networks Based on Improved Fault Data Self-Synchronization Method</title><author>Zhou, Chenghan ; Zou, Guibin ; Zang, Lindong ; Du, Xiaogong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e4c4be572f71d363e70356b07a4ba29b7652becd7b4a4ce029a2c51970e6a37e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active distribution network</topic><topic>Algorithms</topic><topic>Communications equipment</topic><topic>current differential protection</topic><topic>Current measurement</topic><topic>Delays</topic><topic>distributed generation</topic><topic>Distribution networks</topic><topic>Fault currents</topic><topic>fault data self-synchronization</topic><topic>Global Positioning System</topic><topic>Relays</topic><topic>slope polarity</topic><topic>Synchronization</topic><topic>Time synchronization</topic><topic>Transmission lines</topic><topic>zero-crossing-point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Chenghan</creatorcontrib><creatorcontrib>Zou, Guibin</creatorcontrib><creatorcontrib>Zang, Lindong</creatorcontrib><creatorcontrib>Du, Xiaogong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Chenghan</au><au>Zou, Guibin</au><au>Zang, Lindong</au><au>Du, Xiaogong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current Differential Protection for Active Distribution Networks Based on Improved Fault Data Self-Synchronization Method</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2022-01</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>166</spage><epage>178</epage><pages>166-178</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>The uncertainty in the direction and magnitude of fault current is a thorny issue for active distribution network (ADN) protection. Current differential protection (CDP) is suitable for ADN with complex operating modes and multiple types of DGs. However, the data synchronization conditions in transmission lines are usually not available in distribution systems with relatively low investment levels. Fault data self-synchronization (FDSS) algorithm is a low-cost data synchronization method specially used for the protection of distribution networks, but there will be large time synchronization errors under some extreme fault conditions. In this paper, the inherent defect of the conventional FDSS algorithm is first analyzed. Then an improved FDSS algorithm is proposed, which uses the current zero-crossing time and current slope polarity to estimate the starting delay difference at both terminals. On this basis, a corresponding CDP scheme is proposed. Compared with traditional CDP, the proposed scheme does not require additional synchronization equipment and high communication bandwidth. Finally, an ADN simulation model was built using PSCAD, and the improved FDSS algorithm program was implemented in MATLAB. Test results prove that the improved FDSS algorithm can effectively reduce the time synchronization error, and the corresponding CDP scheme is effective under various fault conditions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2021.3116608</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6267-9993</orcidid><orcidid>https://orcid.org/0000-0003-4425-9236</orcidid><orcidid>https://orcid.org/0000-0001-6935-8076</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2022-01, Vol.13 (1), p.166-178
issn 1949-3053
1949-3061
language eng
recordid cdi_proquest_journals_2613373019
source IEEE Electronic Library (IEL)
subjects Active distribution network
Algorithms
Communications equipment
current differential protection
Current measurement
Delays
distributed generation
Distribution networks
Fault currents
fault data self-synchronization
Global Positioning System
Relays
slope polarity
Synchronization
Time synchronization
Transmission lines
zero-crossing-point
title Current Differential Protection for Active Distribution Networks Based on Improved Fault Data Self-Synchronization Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20Differential%20Protection%20for%20Active%20Distribution%20Networks%20Based%20on%20Improved%20Fault%20Data%20Self-Synchronization%20Method&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Zhou,%20Chenghan&rft.date=2022-01&rft.volume=13&rft.issue=1&rft.spage=166&rft.epage=178&rft.pages=166-178&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2021.3116608&rft_dat=%3Cproquest_RIE%3E2613373019%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2613373019&rft_id=info:pmid/&rft_ieee_id=9552944&rfr_iscdi=true