Channel Sampler in Hyperspectral Images for Vehicle Detection
Since hyperspectral images (HSIs) contain visual information of multiple wavelengths, invisible signals to human eyes can also be detected. Therefore, it can be widely used for target object detection in bad weather and disaster environments. However, the channel dimension of the HSI is very large,...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Lee, Geonsoo Lee, Jaekyu Baek, Jeonghyun Kim, Hoseong Cho, Donghyeon |
description | Since hyperspectral images (HSIs) contain visual information of multiple wavelengths, invisible signals to human eyes can also be detected. Therefore, it can be widely used for target object detection in bad weather and disaster environments. However, the channel dimension of the HSI is very large, and thus it is very inefficient to apply the existing object detector naively. In this letter, we present a lightweight convolutional neural network (CNN)-based channel sampler to estimate the importance score of each channel in the HSI. Based on the importance score of each channel, we can generate single-channel images that achieve the best object detection performance, as well as analyze the impact of the wavelength in the HSI on object detection performance. The proposed sampler is trained by a self-supervised adversarial learning method that recovers the original input HSI from the generated single-channel image. Therefore, our channel sampler can be seamlessly combined with any existing detectors. For experiments, we build a hyperspectral dataset for vehicle detection and then show the effectiveness of our method through various ablation studies. |
doi_str_mv | 10.1109/LGRS.2021.3111907 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2613372969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9555818</ieee_id><sourcerecordid>2613372969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-da88d27f08350613437ca8b0bffe60b5b1ab5a42599dc40a8201de93c4285eb23</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsFYfQLwseE6d2c02uwcPUrUtFASr4m3ZJBObkiZxNz307U1o8TQD8_3_wMfYLcIEEczDav6-nggQOJGIaCA5YyNUSkegEjwf9lhFyujvS3YVwhZAxFonI_Y427i6poqv3a6tyPOy5otDSz60lHXeVXy5cz8UeNF4_kWbMquIP1PXH8umvmYXhasC3ZzmmH2-vnzMFtHqbb6cPa2iTBjZRbnTOhdJAVoqmKKMZZI5nUJaFDSFVKXoUuVioYzJsxicFoA5GZnFQitKhRyz-2Nv65vfPYXObpu9r_uXVvR9MhFmanoKj1TmmxA8Fbb15c75g0WwgyU7WLKDJXuy1GfujpmSiP55o3p1qOUfCh9iTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613372969</pqid></control><display><type>article</type><title>Channel Sampler in Hyperspectral Images for Vehicle Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Geonsoo ; Lee, Jaekyu ; Baek, Jeonghyun ; Kim, Hoseong ; Cho, Donghyeon</creator><creatorcontrib>Lee, Geonsoo ; Lee, Jaekyu ; Baek, Jeonghyun ; Kim, Hoseong ; Cho, Donghyeon</creatorcontrib><description>Since hyperspectral images (HSIs) contain visual information of multiple wavelengths, invisible signals to human eyes can also be detected. Therefore, it can be widely used for target object detection in bad weather and disaster environments. However, the channel dimension of the HSI is very large, and thus it is very inefficient to apply the existing object detector naively. In this letter, we present a lightweight convolutional neural network (CNN)-based channel sampler to estimate the importance score of each channel in the HSI. Based on the importance score of each channel, we can generate single-channel images that achieve the best object detection performance, as well as analyze the impact of the wavelength in the HSI on object detection performance. The proposed sampler is trained by a self-supervised adversarial learning method that recovers the original input HSI from the generated single-channel image. Therefore, our channel sampler can be seamlessly combined with any existing detectors. For experiments, we build a hyperspectral dataset for vehicle detection and then show the effectiveness of our method through various ablation studies.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3111907</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ablation ; Artificial neural networks ; Channel sampler ; Detection ; Detectors ; Dimensions ; Eye (anatomy) ; Hypercubes ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image coding ; Impact analysis ; Neural networks ; Object detection ; Object recognition ; Target detection ; Task analysis ; Vehicle detection ; Visual signals ; Wavelength ; Wavelengths</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-da88d27f08350613437ca8b0bffe60b5b1ab5a42599dc40a8201de93c4285eb23</citedby><cites>FETCH-LOGICAL-c293t-da88d27f08350613437ca8b0bffe60b5b1ab5a42599dc40a8201de93c4285eb23</cites><orcidid>0000-0001-8179-2983 ; 0000-0002-2184-921X ; 0000-0002-1583-1558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9555818$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9555818$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Geonsoo</creatorcontrib><creatorcontrib>Lee, Jaekyu</creatorcontrib><creatorcontrib>Baek, Jeonghyun</creatorcontrib><creatorcontrib>Kim, Hoseong</creatorcontrib><creatorcontrib>Cho, Donghyeon</creatorcontrib><title>Channel Sampler in Hyperspectral Images for Vehicle Detection</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Since hyperspectral images (HSIs) contain visual information of multiple wavelengths, invisible signals to human eyes can also be detected. Therefore, it can be widely used for target object detection in bad weather and disaster environments. However, the channel dimension of the HSI is very large, and thus it is very inefficient to apply the existing object detector naively. In this letter, we present a lightweight convolutional neural network (CNN)-based channel sampler to estimate the importance score of each channel in the HSI. Based on the importance score of each channel, we can generate single-channel images that achieve the best object detection performance, as well as analyze the impact of the wavelength in the HSI on object detection performance. The proposed sampler is trained by a self-supervised adversarial learning method that recovers the original input HSI from the generated single-channel image. Therefore, our channel sampler can be seamlessly combined with any existing detectors. For experiments, we build a hyperspectral dataset for vehicle detection and then show the effectiveness of our method through various ablation studies.</description><subject>Ablation</subject><subject>Artificial neural networks</subject><subject>Channel sampler</subject><subject>Detection</subject><subject>Detectors</subject><subject>Dimensions</subject><subject>Eye (anatomy)</subject><subject>Hypercubes</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image coding</subject><subject>Impact analysis</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Target detection</subject><subject>Task analysis</subject><subject>Vehicle detection</subject><subject>Visual signals</subject><subject>Wavelength</subject><subject>Wavelengths</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhhdRsFYfQLwseE6d2c02uwcPUrUtFASr4m3ZJBObkiZxNz307U1o8TQD8_3_wMfYLcIEEczDav6-nggQOJGIaCA5YyNUSkegEjwf9lhFyujvS3YVwhZAxFonI_Y427i6poqv3a6tyPOy5otDSz60lHXeVXy5cz8UeNF4_kWbMquIP1PXH8umvmYXhasC3ZzmmH2-vnzMFtHqbb6cPa2iTBjZRbnTOhdJAVoqmKKMZZI5nUJaFDSFVKXoUuVioYzJsxicFoA5GZnFQitKhRyz-2Nv65vfPYXObpu9r_uXVvR9MhFmanoKj1TmmxA8Fbb15c75g0WwgyU7WLKDJXuy1GfujpmSiP55o3p1qOUfCh9iTw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lee, Geonsoo</creator><creator>Lee, Jaekyu</creator><creator>Baek, Jeonghyun</creator><creator>Kim, Hoseong</creator><creator>Cho, Donghyeon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8179-2983</orcidid><orcidid>https://orcid.org/0000-0002-2184-921X</orcidid><orcidid>https://orcid.org/0000-0002-1583-1558</orcidid></search><sort><creationdate>2022</creationdate><title>Channel Sampler in Hyperspectral Images for Vehicle Detection</title><author>Lee, Geonsoo ; Lee, Jaekyu ; Baek, Jeonghyun ; Kim, Hoseong ; Cho, Donghyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-da88d27f08350613437ca8b0bffe60b5b1ab5a42599dc40a8201de93c4285eb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Artificial neural networks</topic><topic>Channel sampler</topic><topic>Detection</topic><topic>Detectors</topic><topic>Dimensions</topic><topic>Eye (anatomy)</topic><topic>Hypercubes</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image coding</topic><topic>Impact analysis</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Target detection</topic><topic>Task analysis</topic><topic>Vehicle detection</topic><topic>Visual signals</topic><topic>Wavelength</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Geonsoo</creatorcontrib><creatorcontrib>Lee, Jaekyu</creatorcontrib><creatorcontrib>Baek, Jeonghyun</creatorcontrib><creatorcontrib>Kim, Hoseong</creatorcontrib><creatorcontrib>Cho, Donghyeon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Geonsoo</au><au>Lee, Jaekyu</au><au>Baek, Jeonghyun</au><au>Kim, Hoseong</au><au>Cho, Donghyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Channel Sampler in Hyperspectral Images for Vehicle Detection</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Since hyperspectral images (HSIs) contain visual information of multiple wavelengths, invisible signals to human eyes can also be detected. Therefore, it can be widely used for target object detection in bad weather and disaster environments. However, the channel dimension of the HSI is very large, and thus it is very inefficient to apply the existing object detector naively. In this letter, we present a lightweight convolutional neural network (CNN)-based channel sampler to estimate the importance score of each channel in the HSI. Based on the importance score of each channel, we can generate single-channel images that achieve the best object detection performance, as well as analyze the impact of the wavelength in the HSI on object detection performance. The proposed sampler is trained by a self-supervised adversarial learning method that recovers the original input HSI from the generated single-channel image. Therefore, our channel sampler can be seamlessly combined with any existing detectors. For experiments, we build a hyperspectral dataset for vehicle detection and then show the effectiveness of our method through various ablation studies.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3111907</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8179-2983</orcidid><orcidid>https://orcid.org/0000-0002-2184-921X</orcidid><orcidid>https://orcid.org/0000-0002-1583-1558</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_2613372969 |
source | IEEE Electronic Library (IEL) |
subjects | Ablation Artificial neural networks Channel sampler Detection Detectors Dimensions Eye (anatomy) Hypercubes hyperspectral image (HSI) Hyperspectral imaging Image coding Impact analysis Neural networks Object detection Object recognition Target detection Task analysis Vehicle detection Visual signals Wavelength Wavelengths |
title | Channel Sampler in Hyperspectral Images for Vehicle Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Channel%20Sampler%20in%20Hyperspectral%20Images%20for%20Vehicle%20Detection&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Lee,%20Geonsoo&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3111907&rft_dat=%3Cproquest_RIE%3E2613372969%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2613372969&rft_id=info:pmid/&rft_ieee_id=9555818&rfr_iscdi=true |