Channel Sampler in Hyperspectral Images for Vehicle Detection

Since hyperspectral images (HSIs) contain visual information of multiple wavelengths, invisible signals to human eyes can also be detected. Therefore, it can be widely used for target object detection in bad weather and disaster environments. However, the channel dimension of the HSI is very large,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Lee, Geonsoo, Lee, Jaekyu, Baek, Jeonghyun, Kim, Hoseong, Cho, Donghyeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Lee, Geonsoo
Lee, Jaekyu
Baek, Jeonghyun
Kim, Hoseong
Cho, Donghyeon
description Since hyperspectral images (HSIs) contain visual information of multiple wavelengths, invisible signals to human eyes can also be detected. Therefore, it can be widely used for target object detection in bad weather and disaster environments. However, the channel dimension of the HSI is very large, and thus it is very inefficient to apply the existing object detector naively. In this letter, we present a lightweight convolutional neural network (CNN)-based channel sampler to estimate the importance score of each channel in the HSI. Based on the importance score of each channel, we can generate single-channel images that achieve the best object detection performance, as well as analyze the impact of the wavelength in the HSI on object detection performance. The proposed sampler is trained by a self-supervised adversarial learning method that recovers the original input HSI from the generated single-channel image. Therefore, our channel sampler can be seamlessly combined with any existing detectors. For experiments, we build a hyperspectral dataset for vehicle detection and then show the effectiveness of our method through various ablation studies.
doi_str_mv 10.1109/LGRS.2021.3111907
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2613372969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9555818</ieee_id><sourcerecordid>2613372969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-da88d27f08350613437ca8b0bffe60b5b1ab5a42599dc40a8201de93c4285eb23</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsFYfQLwseE6d2c02uwcPUrUtFASr4m3ZJBObkiZxNz307U1o8TQD8_3_wMfYLcIEEczDav6-nggQOJGIaCA5YyNUSkegEjwf9lhFyujvS3YVwhZAxFonI_Y427i6poqv3a6tyPOy5otDSz60lHXeVXy5cz8UeNF4_kWbMquIP1PXH8umvmYXhasC3ZzmmH2-vnzMFtHqbb6cPa2iTBjZRbnTOhdJAVoqmKKMZZI5nUJaFDSFVKXoUuVioYzJsxicFoA5GZnFQitKhRyz-2Nv65vfPYXObpu9r_uXVvR9MhFmanoKj1TmmxA8Fbb15c75g0WwgyU7WLKDJXuy1GfujpmSiP55o3p1qOUfCh9iTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613372969</pqid></control><display><type>article</type><title>Channel Sampler in Hyperspectral Images for Vehicle Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Geonsoo ; Lee, Jaekyu ; Baek, Jeonghyun ; Kim, Hoseong ; Cho, Donghyeon</creator><creatorcontrib>Lee, Geonsoo ; Lee, Jaekyu ; Baek, Jeonghyun ; Kim, Hoseong ; Cho, Donghyeon</creatorcontrib><description>Since hyperspectral images (HSIs) contain visual information of multiple wavelengths, invisible signals to human eyes can also be detected. Therefore, it can be widely used for target object detection in bad weather and disaster environments. However, the channel dimension of the HSI is very large, and thus it is very inefficient to apply the existing object detector naively. In this letter, we present a lightweight convolutional neural network (CNN)-based channel sampler to estimate the importance score of each channel in the HSI. Based on the importance score of each channel, we can generate single-channel images that achieve the best object detection performance, as well as analyze the impact of the wavelength in the HSI on object detection performance. The proposed sampler is trained by a self-supervised adversarial learning method that recovers the original input HSI from the generated single-channel image. Therefore, our channel sampler can be seamlessly combined with any existing detectors. For experiments, we build a hyperspectral dataset for vehicle detection and then show the effectiveness of our method through various ablation studies.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3111907</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ablation ; Artificial neural networks ; Channel sampler ; Detection ; Detectors ; Dimensions ; Eye (anatomy) ; Hypercubes ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image coding ; Impact analysis ; Neural networks ; Object detection ; Object recognition ; Target detection ; Task analysis ; Vehicle detection ; Visual signals ; Wavelength ; Wavelengths</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-da88d27f08350613437ca8b0bffe60b5b1ab5a42599dc40a8201de93c4285eb23</citedby><cites>FETCH-LOGICAL-c293t-da88d27f08350613437ca8b0bffe60b5b1ab5a42599dc40a8201de93c4285eb23</cites><orcidid>0000-0001-8179-2983 ; 0000-0002-2184-921X ; 0000-0002-1583-1558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9555818$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9555818$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Geonsoo</creatorcontrib><creatorcontrib>Lee, Jaekyu</creatorcontrib><creatorcontrib>Baek, Jeonghyun</creatorcontrib><creatorcontrib>Kim, Hoseong</creatorcontrib><creatorcontrib>Cho, Donghyeon</creatorcontrib><title>Channel Sampler in Hyperspectral Images for Vehicle Detection</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Since hyperspectral images (HSIs) contain visual information of multiple wavelengths, invisible signals to human eyes can also be detected. Therefore, it can be widely used for target object detection in bad weather and disaster environments. However, the channel dimension of the HSI is very large, and thus it is very inefficient to apply the existing object detector naively. In this letter, we present a lightweight convolutional neural network (CNN)-based channel sampler to estimate the importance score of each channel in the HSI. Based on the importance score of each channel, we can generate single-channel images that achieve the best object detection performance, as well as analyze the impact of the wavelength in the HSI on object detection performance. The proposed sampler is trained by a self-supervised adversarial learning method that recovers the original input HSI from the generated single-channel image. Therefore, our channel sampler can be seamlessly combined with any existing detectors. For experiments, we build a hyperspectral dataset for vehicle detection and then show the effectiveness of our method through various ablation studies.</description><subject>Ablation</subject><subject>Artificial neural networks</subject><subject>Channel sampler</subject><subject>Detection</subject><subject>Detectors</subject><subject>Dimensions</subject><subject>Eye (anatomy)</subject><subject>Hypercubes</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image coding</subject><subject>Impact analysis</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Target detection</subject><subject>Task analysis</subject><subject>Vehicle detection</subject><subject>Visual signals</subject><subject>Wavelength</subject><subject>Wavelengths</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhhdRsFYfQLwseE6d2c02uwcPUrUtFASr4m3ZJBObkiZxNz307U1o8TQD8_3_wMfYLcIEEczDav6-nggQOJGIaCA5YyNUSkegEjwf9lhFyujvS3YVwhZAxFonI_Y427i6poqv3a6tyPOy5otDSz60lHXeVXy5cz8UeNF4_kWbMquIP1PXH8umvmYXhasC3ZzmmH2-vnzMFtHqbb6cPa2iTBjZRbnTOhdJAVoqmKKMZZI5nUJaFDSFVKXoUuVioYzJsxicFoA5GZnFQitKhRyz-2Nv65vfPYXObpu9r_uXVvR9MhFmanoKj1TmmxA8Fbb15c75g0WwgyU7WLKDJXuy1GfujpmSiP55o3p1qOUfCh9iTw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lee, Geonsoo</creator><creator>Lee, Jaekyu</creator><creator>Baek, Jeonghyun</creator><creator>Kim, Hoseong</creator><creator>Cho, Donghyeon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8179-2983</orcidid><orcidid>https://orcid.org/0000-0002-2184-921X</orcidid><orcidid>https://orcid.org/0000-0002-1583-1558</orcidid></search><sort><creationdate>2022</creationdate><title>Channel Sampler in Hyperspectral Images for Vehicle Detection</title><author>Lee, Geonsoo ; Lee, Jaekyu ; Baek, Jeonghyun ; Kim, Hoseong ; Cho, Donghyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-da88d27f08350613437ca8b0bffe60b5b1ab5a42599dc40a8201de93c4285eb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Artificial neural networks</topic><topic>Channel sampler</topic><topic>Detection</topic><topic>Detectors</topic><topic>Dimensions</topic><topic>Eye (anatomy)</topic><topic>Hypercubes</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image coding</topic><topic>Impact analysis</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Target detection</topic><topic>Task analysis</topic><topic>Vehicle detection</topic><topic>Visual signals</topic><topic>Wavelength</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Geonsoo</creatorcontrib><creatorcontrib>Lee, Jaekyu</creatorcontrib><creatorcontrib>Baek, Jeonghyun</creatorcontrib><creatorcontrib>Kim, Hoseong</creatorcontrib><creatorcontrib>Cho, Donghyeon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Geonsoo</au><au>Lee, Jaekyu</au><au>Baek, Jeonghyun</au><au>Kim, Hoseong</au><au>Cho, Donghyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Channel Sampler in Hyperspectral Images for Vehicle Detection</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Since hyperspectral images (HSIs) contain visual information of multiple wavelengths, invisible signals to human eyes can also be detected. Therefore, it can be widely used for target object detection in bad weather and disaster environments. However, the channel dimension of the HSI is very large, and thus it is very inefficient to apply the existing object detector naively. In this letter, we present a lightweight convolutional neural network (CNN)-based channel sampler to estimate the importance score of each channel in the HSI. Based on the importance score of each channel, we can generate single-channel images that achieve the best object detection performance, as well as analyze the impact of the wavelength in the HSI on object detection performance. The proposed sampler is trained by a self-supervised adversarial learning method that recovers the original input HSI from the generated single-channel image. Therefore, our channel sampler can be seamlessly combined with any existing detectors. For experiments, we build a hyperspectral dataset for vehicle detection and then show the effectiveness of our method through various ablation studies.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3111907</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8179-2983</orcidid><orcidid>https://orcid.org/0000-0002-2184-921X</orcidid><orcidid>https://orcid.org/0000-0002-1583-1558</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_2613372969
source IEEE Electronic Library (IEL)
subjects Ablation
Artificial neural networks
Channel sampler
Detection
Detectors
Dimensions
Eye (anatomy)
Hypercubes
hyperspectral image (HSI)
Hyperspectral imaging
Image coding
Impact analysis
Neural networks
Object detection
Object recognition
Target detection
Task analysis
Vehicle detection
Visual signals
Wavelength
Wavelengths
title Channel Sampler in Hyperspectral Images for Vehicle Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Channel%20Sampler%20in%20Hyperspectral%20Images%20for%20Vehicle%20Detection&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Lee,%20Geonsoo&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3111907&rft_dat=%3Cproquest_RIE%3E2613372969%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2613372969&rft_id=info:pmid/&rft_ieee_id=9555818&rfr_iscdi=true