Human-in-the-loop Extraction of Interpretable Concepts in Deep Learning Models

The interpretation of deep neural networks (DNNs) has become a key topic as more and more people apply them to solve various problems and making critical decisions. Concept-based explanations have recently become a popular approach for post-hoc interpretation of DNNs. However, identifying human-unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2022-01, Vol.28 (1), p.780-790
Hauptverfasser: Zhao, Zhenge, Xu, Panpan, Scheidegger, Carlos, Ren, Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 790
container_issue 1
container_start_page 780
container_title IEEE transactions on visualization and computer graphics
container_volume 28
creator Zhao, Zhenge
Xu, Panpan
Scheidegger, Carlos
Ren, Liu
description The interpretation of deep neural networks (DNNs) has become a key topic as more and more people apply them to solve various problems and making critical decisions. Concept-based explanations have recently become a popular approach for post-hoc interpretation of DNNs. However, identifying human-understandable visual concepts that affect model decisions is a challenging task that is not easily addressed with automatic approaches. We present a novel human-in-the-Ioop approach to generate user-defined concepts for model interpretation and diagnostics. Central to our proposal is the use of active learning, where human knowledge and feedback are combined to train a concept extractor with very little human labeling effort. We integrate this process into an interactive system, ConceptExtract. Through two case studies, we show how our approach helps analyze model behavior and extract human-friendly concepts for different machine learning tasks and datasets and how to use these concepts to understand the predictions, compare model performance and make suggestions for model refinement. Quantitative experiments show that our active learning approach can accurately extract meaningful visual concepts. More importantly, by identifying visual concepts that negatively affect model performance, we develop the corresponding data augmentation strategy that consistently improves model performance.
doi_str_mv 10.1109/TVCG.2021.3114837
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2613370868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9552218</ieee_id><sourcerecordid>2578155388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-232fdc9d5dba536a1f1c6f21b949c7592bc87b43ef6fad427eba41e34f9d2f153</originalsourceid><addsrcrecordid>eNpdkE2LFDEQhoMo7of-ABGkwYuXHlP5zlFm192FUS-r15BOV7SXnqRNukH_vT3M7B48VUE970vxEPIG6AaA2o_3P7Y3G0YZbDiAMFw_I-dgBbRUUvV83anWLVNMnZGLWh8oBSGMfUnOuJBGU6XOydfbZe9TO6R2_oXtmPPUXP-Ziw_zkFOTY3OXZixTwdl3IzbbnAJOc22G1FwhTs0OfUlD-tl8yT2O9RV5Ef1Y8fVpXpLvn6_vt7ft7tvN3fbTrg1c2LllnMU-2F72nZdceYgQVGTQWWGDlpZ1wehOcIwq-l4wjZ0XgFxE27MIkl-SD8feqeTfC9bZ7YcacBx9wrxUx6Q2ICU3ZkXf_4c-5KWk9TvHFHCuqVEHCo5UKLnWgtFNZdj78tcBdQfZ7iDbHWS7k-w18-7UvHR77J8Sj3ZX4O0RGBDx6WylZAwM_wekC4Jm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613370868</pqid></control><display><type>article</type><title>Human-in-the-loop Extraction of Interpretable Concepts in Deep Learning Models</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Zhenge ; Xu, Panpan ; Scheidegger, Carlos ; Ren, Liu</creator><creatorcontrib>Zhao, Zhenge ; Xu, Panpan ; Scheidegger, Carlos ; Ren, Liu</creatorcontrib><description>The interpretation of deep neural networks (DNNs) has become a key topic as more and more people apply them to solve various problems and making critical decisions. Concept-based explanations have recently become a popular approach for post-hoc interpretation of DNNs. However, identifying human-understandable visual concepts that affect model decisions is a challenging task that is not easily addressed with automatic approaches. We present a novel human-in-the-Ioop approach to generate user-defined concepts for model interpretation and diagnostics. Central to our proposal is the use of active learning, where human knowledge and feedback are combined to train a concept extractor with very little human labeling effort. We integrate this process into an interactive system, ConceptExtract. Through two case studies, we show how our approach helps analyze model behavior and extract human-friendly concepts for different machine learning tasks and datasets and how to use these concepts to understand the predictions, compare model performance and make suggestions for model refinement. Quantitative experiments show that our active learning approach can accurately extract meaningful visual concepts. More importantly, by identifying visual concepts that negatively affect model performance, we develop the corresponding data augmentation strategy that consistently improves model performance.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2021.3114837</identifier><identifier>PMID: 34587066</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active learning ; Analytical models ; Artificial neural networks ; Cognitive tasks ; Computational modeling ; Computer Graphics ; Data models ; Decisions ; Deep Learning ; Deep Neural Network ; Explainable AI ; Humans ; Interactive systems ; Machine Learning ; Model Interpretation ; Neural Networks, Computer ; Predictive models ; Task analysis ; Visual Data Exploration ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2022-01, Vol.28 (1), p.780-790</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-232fdc9d5dba536a1f1c6f21b949c7592bc87b43ef6fad427eba41e34f9d2f153</citedby><cites>FETCH-LOGICAL-c349t-232fdc9d5dba536a1f1c6f21b949c7592bc87b43ef6fad427eba41e34f9d2f153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9552218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9552218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34587066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Zhenge</creatorcontrib><creatorcontrib>Xu, Panpan</creatorcontrib><creatorcontrib>Scheidegger, Carlos</creatorcontrib><creatorcontrib>Ren, Liu</creatorcontrib><title>Human-in-the-loop Extraction of Interpretable Concepts in Deep Learning Models</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>The interpretation of deep neural networks (DNNs) has become a key topic as more and more people apply them to solve various problems and making critical decisions. Concept-based explanations have recently become a popular approach for post-hoc interpretation of DNNs. However, identifying human-understandable visual concepts that affect model decisions is a challenging task that is not easily addressed with automatic approaches. We present a novel human-in-the-Ioop approach to generate user-defined concepts for model interpretation and diagnostics. Central to our proposal is the use of active learning, where human knowledge and feedback are combined to train a concept extractor with very little human labeling effort. We integrate this process into an interactive system, ConceptExtract. Through two case studies, we show how our approach helps analyze model behavior and extract human-friendly concepts for different machine learning tasks and datasets and how to use these concepts to understand the predictions, compare model performance and make suggestions for model refinement. Quantitative experiments show that our active learning approach can accurately extract meaningful visual concepts. More importantly, by identifying visual concepts that negatively affect model performance, we develop the corresponding data augmentation strategy that consistently improves model performance.</description><subject>Active learning</subject><subject>Analytical models</subject><subject>Artificial neural networks</subject><subject>Cognitive tasks</subject><subject>Computational modeling</subject><subject>Computer Graphics</subject><subject>Data models</subject><subject>Decisions</subject><subject>Deep Learning</subject><subject>Deep Neural Network</subject><subject>Explainable AI</subject><subject>Humans</subject><subject>Interactive systems</subject><subject>Machine Learning</subject><subject>Model Interpretation</subject><subject>Neural Networks, Computer</subject><subject>Predictive models</subject><subject>Task analysis</subject><subject>Visual Data Exploration</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE2LFDEQhoMo7of-ABGkwYuXHlP5zlFm192FUS-r15BOV7SXnqRNukH_vT3M7B48VUE970vxEPIG6AaA2o_3P7Y3G0YZbDiAMFw_I-dgBbRUUvV83anWLVNMnZGLWh8oBSGMfUnOuJBGU6XOydfbZe9TO6R2_oXtmPPUXP-Ziw_zkFOTY3OXZixTwdl3IzbbnAJOc22G1FwhTs0OfUlD-tl8yT2O9RV5Ef1Y8fVpXpLvn6_vt7ft7tvN3fbTrg1c2LllnMU-2F72nZdceYgQVGTQWWGDlpZ1wehOcIwq-l4wjZ0XgFxE27MIkl-SD8feqeTfC9bZ7YcacBx9wrxUx6Q2ICU3ZkXf_4c-5KWk9TvHFHCuqVEHCo5UKLnWgtFNZdj78tcBdQfZ7iDbHWS7k-w18-7UvHR77J8Sj3ZX4O0RGBDx6WylZAwM_wekC4Jm</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Zhao, Zhenge</creator><creator>Xu, Panpan</creator><creator>Scheidegger, Carlos</creator><creator>Ren, Liu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>202201</creationdate><title>Human-in-the-loop Extraction of Interpretable Concepts in Deep Learning Models</title><author>Zhao, Zhenge ; Xu, Panpan ; Scheidegger, Carlos ; Ren, Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-232fdc9d5dba536a1f1c6f21b949c7592bc87b43ef6fad427eba41e34f9d2f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active learning</topic><topic>Analytical models</topic><topic>Artificial neural networks</topic><topic>Cognitive tasks</topic><topic>Computational modeling</topic><topic>Computer Graphics</topic><topic>Data models</topic><topic>Decisions</topic><topic>Deep Learning</topic><topic>Deep Neural Network</topic><topic>Explainable AI</topic><topic>Humans</topic><topic>Interactive systems</topic><topic>Machine Learning</topic><topic>Model Interpretation</topic><topic>Neural Networks, Computer</topic><topic>Predictive models</topic><topic>Task analysis</topic><topic>Visual Data Exploration</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhenge</creatorcontrib><creatorcontrib>Xu, Panpan</creatorcontrib><creatorcontrib>Scheidegger, Carlos</creatorcontrib><creatorcontrib>Ren, Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Zhenge</au><au>Xu, Panpan</au><au>Scheidegger, Carlos</au><au>Ren, Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human-in-the-loop Extraction of Interpretable Concepts in Deep Learning Models</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2022-01</date><risdate>2022</risdate><volume>28</volume><issue>1</issue><spage>780</spage><epage>790</epage><pages>780-790</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>The interpretation of deep neural networks (DNNs) has become a key topic as more and more people apply them to solve various problems and making critical decisions. Concept-based explanations have recently become a popular approach for post-hoc interpretation of DNNs. However, identifying human-understandable visual concepts that affect model decisions is a challenging task that is not easily addressed with automatic approaches. We present a novel human-in-the-Ioop approach to generate user-defined concepts for model interpretation and diagnostics. Central to our proposal is the use of active learning, where human knowledge and feedback are combined to train a concept extractor with very little human labeling effort. We integrate this process into an interactive system, ConceptExtract. Through two case studies, we show how our approach helps analyze model behavior and extract human-friendly concepts for different machine learning tasks and datasets and how to use these concepts to understand the predictions, compare model performance and make suggestions for model refinement. Quantitative experiments show that our active learning approach can accurately extract meaningful visual concepts. More importantly, by identifying visual concepts that negatively affect model performance, we develop the corresponding data augmentation strategy that consistently improves model performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34587066</pmid><doi>10.1109/TVCG.2021.3114837</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2022-01, Vol.28 (1), p.780-790
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_journals_2613370868
source IEEE Electronic Library (IEL)
subjects Active learning
Analytical models
Artificial neural networks
Cognitive tasks
Computational modeling
Computer Graphics
Data models
Decisions
Deep Learning
Deep Neural Network
Explainable AI
Humans
Interactive systems
Machine Learning
Model Interpretation
Neural Networks, Computer
Predictive models
Task analysis
Visual Data Exploration
Visualization
title Human-in-the-loop Extraction of Interpretable Concepts in Deep Learning Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human-in-the-loop%20Extraction%20of%20Interpretable%20Concepts%20in%20Deep%20Learning%20Models&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Zhao,%20Zhenge&rft.date=2022-01&rft.volume=28&rft.issue=1&rft.spage=780&rft.epage=790&rft.pages=780-790&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2021.3114837&rft_dat=%3Cproquest_RIE%3E2578155388%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2613370868&rft_id=info:pmid/34587066&rft_ieee_id=9552218&rfr_iscdi=true