Electrochemical Performance of Iron-Doped Cobalt Oxide Hierarchical Nanostructure
In this study, hydrothermally produced Fe-doped Co3O4 nanostructured particles are investigated as electrocatalysts for the water-splitting process and electrode materials for supercapacitor devices. The results of the experiments demonstrated that the surface area, specific capacitance, and electro...
Gespeichert in:
Veröffentlicht in: | Processes 2021-12, Vol.9 (12), p.2176 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 2176 |
container_title | Processes |
container_volume | 9 |
creator | Guragain, Deepa Karna, Sunil Choi, Jonghyun Bhattarai, Romakanta Poudel, Tej P. Gupta, Ram Krishna Shen, Xiao Mishra, Sanjay R. |
description | In this study, hydrothermally produced Fe-doped Co3O4 nanostructured particles are investigated as electrocatalysts for the water-splitting process and electrode materials for supercapacitor devices. The results of the experiments demonstrated that the surface area, specific capacitance, and electrochemical performance of Co3O4 are all influenced by Fe3+ content. The FexCo3-xO4 with x = 1 sample exhibits a higher BET surface (87.45 m2/g) than that of the pristine Co3O4 (59.4 m2/g). Electrochemical measurements of the electrode carried out in 3 M KOH reveal a high specific capacitance of 153 F/g at a current density of 1 A/g for x = 0.6 and 684 F/g at a 2 mV/s scan rate for x = 1.0 samples. In terms of electrocatalytic performance, the electrode (x = 1.0) displayed a low overpotential of 266 mV (at a current density of 10 mA/cm2) along with 52 mV/dec Tafel slopes in the oxygen evolution reaction. Additionally, the overpotential of 132 mV (at a current density of 10 mA/cm2) and 109 mV with 52 mV/dec Tafel slope were obtained for x = 0.6 sample towards hydrogen evolution reaction (HER). According to electrochemical impedance spectroscopy (EIS) measurements and the density functional theory (DFT) study, the addition of Fe3+ increased the conductivity at the electrode–electrolyte interface, which substantially impacted the high activity of the iron-doped cobalt oxide. The electrochemical results revealed that the mesoporous Fe-doped Co3O4 nanostructure could be used as potential electrode material in the high-performance electrochemical capacitor and water-splitting catalysts. |
doi_str_mv | 10.3390/pr9122176 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2612841099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612841099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b541463ccd0325dbee068ae68432abe679b97b5e54864991ea2af7d021147dfd3</originalsourceid><addsrcrecordid>eNpNUEtLw0AYXETBUnvwHwQ8eYjuK7vZo9RqC8Uq6Dlsdr_QlCQbv01A_73RijiXmcM8YAi5ZPRGCENvezSMc6bVCZlxznVqNNOn__Q5WcR4oBMME3mmZuRl1YAbMLg9tLWzTfIMWAVsbecgCVWywdCl96EHnyxDaZsh2X3UHpJ1DWjR7X8yT7YLccDRDSPCBTmrbBNh8ctz8vawel2u0-3ucbO826aOGz6kZSaZVMI5TwXPfAlAVW5B5VJwW4LSpjS6zCCTuZLGMLDcVtpTzpjUvvJiTq6OvT2G9xHiUBzCiN00WXDFeC4ZNWZyXR9dDkOMCFXRY91a_CwYLb5PK_5OE1_CPF6X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612841099</pqid></control><display><type>article</type><title>Electrochemical Performance of Iron-Doped Cobalt Oxide Hierarchical Nanostructure</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Guragain, Deepa ; Karna, Sunil ; Choi, Jonghyun ; Bhattarai, Romakanta ; Poudel, Tej P. ; Gupta, Ram Krishna ; Shen, Xiao ; Mishra, Sanjay R.</creator><creatorcontrib>Guragain, Deepa ; Karna, Sunil ; Choi, Jonghyun ; Bhattarai, Romakanta ; Poudel, Tej P. ; Gupta, Ram Krishna ; Shen, Xiao ; Mishra, Sanjay R.</creatorcontrib><description>In this study, hydrothermally produced Fe-doped Co3O4 nanostructured particles are investigated as electrocatalysts for the water-splitting process and electrode materials for supercapacitor devices. The results of the experiments demonstrated that the surface area, specific capacitance, and electrochemical performance of Co3O4 are all influenced by Fe3+ content. The FexCo3-xO4 with x = 1 sample exhibits a higher BET surface (87.45 m2/g) than that of the pristine Co3O4 (59.4 m2/g). Electrochemical measurements of the electrode carried out in 3 M KOH reveal a high specific capacitance of 153 F/g at a current density of 1 A/g for x = 0.6 and 684 F/g at a 2 mV/s scan rate for x = 1.0 samples. In terms of electrocatalytic performance, the electrode (x = 1.0) displayed a low overpotential of 266 mV (at a current density of 10 mA/cm2) along with 52 mV/dec Tafel slopes in the oxygen evolution reaction. Additionally, the overpotential of 132 mV (at a current density of 10 mA/cm2) and 109 mV with 52 mV/dec Tafel slope were obtained for x = 0.6 sample towards hydrogen evolution reaction (HER). According to electrochemical impedance spectroscopy (EIS) measurements and the density functional theory (DFT) study, the addition of Fe3+ increased the conductivity at the electrode–electrolyte interface, which substantially impacted the high activity of the iron-doped cobalt oxide. The electrochemical results revealed that the mesoporous Fe-doped Co3O4 nanostructure could be used as potential electrode material in the high-performance electrochemical capacitor and water-splitting catalysts.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr9122176</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Capacitance ; Catalysts ; Cobalt ; Cobalt oxides ; Current density ; Density functional theory ; Electrocatalysts ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrode materials ; Electrodes ; Electrolytes ; Energy resources ; Hydrogen ; Hydrogen evolution reactions ; Iron ; Metal oxides ; Morphology ; Nanomaterials ; Nanostructure ; Nitrates ; Oxygen evolution reactions ; Spectroscopy ; Spectrum analysis ; Voltammetry ; Water splitting</subject><ispartof>Processes, 2021-12, Vol.9 (12), p.2176</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-b541463ccd0325dbee068ae68432abe679b97b5e54864991ea2af7d021147dfd3</citedby><cites>FETCH-LOGICAL-c292t-b541463ccd0325dbee068ae68432abe679b97b5e54864991ea2af7d021147dfd3</cites><orcidid>0000-0003-4787-5739 ; 0000-0002-7216-8756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guragain, Deepa</creatorcontrib><creatorcontrib>Karna, Sunil</creatorcontrib><creatorcontrib>Choi, Jonghyun</creatorcontrib><creatorcontrib>Bhattarai, Romakanta</creatorcontrib><creatorcontrib>Poudel, Tej P.</creatorcontrib><creatorcontrib>Gupta, Ram Krishna</creatorcontrib><creatorcontrib>Shen, Xiao</creatorcontrib><creatorcontrib>Mishra, Sanjay R.</creatorcontrib><title>Electrochemical Performance of Iron-Doped Cobalt Oxide Hierarchical Nanostructure</title><title>Processes</title><description>In this study, hydrothermally produced Fe-doped Co3O4 nanostructured particles are investigated as electrocatalysts for the water-splitting process and electrode materials for supercapacitor devices. The results of the experiments demonstrated that the surface area, specific capacitance, and electrochemical performance of Co3O4 are all influenced by Fe3+ content. The FexCo3-xO4 with x = 1 sample exhibits a higher BET surface (87.45 m2/g) than that of the pristine Co3O4 (59.4 m2/g). Electrochemical measurements of the electrode carried out in 3 M KOH reveal a high specific capacitance of 153 F/g at a current density of 1 A/g for x = 0.6 and 684 F/g at a 2 mV/s scan rate for x = 1.0 samples. In terms of electrocatalytic performance, the electrode (x = 1.0) displayed a low overpotential of 266 mV (at a current density of 10 mA/cm2) along with 52 mV/dec Tafel slopes in the oxygen evolution reaction. Additionally, the overpotential of 132 mV (at a current density of 10 mA/cm2) and 109 mV with 52 mV/dec Tafel slope were obtained for x = 0.6 sample towards hydrogen evolution reaction (HER). According to electrochemical impedance spectroscopy (EIS) measurements and the density functional theory (DFT) study, the addition of Fe3+ increased the conductivity at the electrode–electrolyte interface, which substantially impacted the high activity of the iron-doped cobalt oxide. The electrochemical results revealed that the mesoporous Fe-doped Co3O4 nanostructure could be used as potential electrode material in the high-performance electrochemical capacitor and water-splitting catalysts.</description><subject>Alternative energy sources</subject><subject>Capacitance</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>Cobalt oxides</subject><subject>Current density</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy resources</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Iron</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nitrates</subject><subject>Oxygen evolution reactions</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Voltammetry</subject><subject>Water splitting</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUEtLw0AYXETBUnvwHwQ8eYjuK7vZo9RqC8Uq6Dlsdr_QlCQbv01A_73RijiXmcM8YAi5ZPRGCENvezSMc6bVCZlxznVqNNOn__Q5WcR4oBMME3mmZuRl1YAbMLg9tLWzTfIMWAVsbecgCVWywdCl96EHnyxDaZsh2X3UHpJ1DWjR7X8yT7YLccDRDSPCBTmrbBNh8ctz8vawel2u0-3ucbO826aOGz6kZSaZVMI5TwXPfAlAVW5B5VJwW4LSpjS6zCCTuZLGMLDcVtpTzpjUvvJiTq6OvT2G9xHiUBzCiN00WXDFeC4ZNWZyXR9dDkOMCFXRY91a_CwYLb5PK_5OE1_CPF6X</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Guragain, Deepa</creator><creator>Karna, Sunil</creator><creator>Choi, Jonghyun</creator><creator>Bhattarai, Romakanta</creator><creator>Poudel, Tej P.</creator><creator>Gupta, Ram Krishna</creator><creator>Shen, Xiao</creator><creator>Mishra, Sanjay R.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4787-5739</orcidid><orcidid>https://orcid.org/0000-0002-7216-8756</orcidid></search><sort><creationdate>20211201</creationdate><title>Electrochemical Performance of Iron-Doped Cobalt Oxide Hierarchical Nanostructure</title><author>Guragain, Deepa ; Karna, Sunil ; Choi, Jonghyun ; Bhattarai, Romakanta ; Poudel, Tej P. ; Gupta, Ram Krishna ; Shen, Xiao ; Mishra, Sanjay R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b541463ccd0325dbee068ae68432abe679b97b5e54864991ea2af7d021147dfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative energy sources</topic><topic>Capacitance</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>Cobalt oxides</topic><topic>Current density</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy resources</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Iron</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nitrates</topic><topic>Oxygen evolution reactions</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Voltammetry</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guragain, Deepa</creatorcontrib><creatorcontrib>Karna, Sunil</creatorcontrib><creatorcontrib>Choi, Jonghyun</creatorcontrib><creatorcontrib>Bhattarai, Romakanta</creatorcontrib><creatorcontrib>Poudel, Tej P.</creatorcontrib><creatorcontrib>Gupta, Ram Krishna</creatorcontrib><creatorcontrib>Shen, Xiao</creatorcontrib><creatorcontrib>Mishra, Sanjay R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guragain, Deepa</au><au>Karna, Sunil</au><au>Choi, Jonghyun</au><au>Bhattarai, Romakanta</au><au>Poudel, Tej P.</au><au>Gupta, Ram Krishna</au><au>Shen, Xiao</au><au>Mishra, Sanjay R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Performance of Iron-Doped Cobalt Oxide Hierarchical Nanostructure</atitle><jtitle>Processes</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>9</volume><issue>12</issue><spage>2176</spage><pages>2176-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>In this study, hydrothermally produced Fe-doped Co3O4 nanostructured particles are investigated as electrocatalysts for the water-splitting process and electrode materials for supercapacitor devices. The results of the experiments demonstrated that the surface area, specific capacitance, and electrochemical performance of Co3O4 are all influenced by Fe3+ content. The FexCo3-xO4 with x = 1 sample exhibits a higher BET surface (87.45 m2/g) than that of the pristine Co3O4 (59.4 m2/g). Electrochemical measurements of the electrode carried out in 3 M KOH reveal a high specific capacitance of 153 F/g at a current density of 1 A/g for x = 0.6 and 684 F/g at a 2 mV/s scan rate for x = 1.0 samples. In terms of electrocatalytic performance, the electrode (x = 1.0) displayed a low overpotential of 266 mV (at a current density of 10 mA/cm2) along with 52 mV/dec Tafel slopes in the oxygen evolution reaction. Additionally, the overpotential of 132 mV (at a current density of 10 mA/cm2) and 109 mV with 52 mV/dec Tafel slope were obtained for x = 0.6 sample towards hydrogen evolution reaction (HER). According to electrochemical impedance spectroscopy (EIS) measurements and the density functional theory (DFT) study, the addition of Fe3+ increased the conductivity at the electrode–electrolyte interface, which substantially impacted the high activity of the iron-doped cobalt oxide. The electrochemical results revealed that the mesoporous Fe-doped Co3O4 nanostructure could be used as potential electrode material in the high-performance electrochemical capacitor and water-splitting catalysts.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr9122176</doi><orcidid>https://orcid.org/0000-0003-4787-5739</orcidid><orcidid>https://orcid.org/0000-0002-7216-8756</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2021-12, Vol.9 (12), p.2176 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2612841099 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Alternative energy sources Capacitance Catalysts Cobalt Cobalt oxides Current density Density functional theory Electrocatalysts Electrochemical analysis Electrochemical impedance spectroscopy Electrode materials Electrodes Electrolytes Energy resources Hydrogen Hydrogen evolution reactions Iron Metal oxides Morphology Nanomaterials Nanostructure Nitrates Oxygen evolution reactions Spectroscopy Spectrum analysis Voltammetry Water splitting |
title | Electrochemical Performance of Iron-Doped Cobalt Oxide Hierarchical Nanostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Performance%20of%20Iron-Doped%20Cobalt%20Oxide%20Hierarchical%20Nanostructure&rft.jtitle=Processes&rft.au=Guragain,%20Deepa&rft.date=2021-12-01&rft.volume=9&rft.issue=12&rft.spage=2176&rft.pages=2176-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr9122176&rft_dat=%3Cproquest_cross%3E2612841099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612841099&rft_id=info:pmid/&rfr_iscdi=true |