Electrochemical Performance of Iron-Doped Cobalt Oxide Hierarchical Nanostructure

In this study, hydrothermally produced Fe-doped Co3O4 nanostructured particles are investigated as electrocatalysts for the water-splitting process and electrode materials for supercapacitor devices. The results of the experiments demonstrated that the surface area, specific capacitance, and electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2021-12, Vol.9 (12), p.2176
Hauptverfasser: Guragain, Deepa, Karna, Sunil, Choi, Jonghyun, Bhattarai, Romakanta, Poudel, Tej P., Gupta, Ram Krishna, Shen, Xiao, Mishra, Sanjay R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 2176
container_title Processes
container_volume 9
creator Guragain, Deepa
Karna, Sunil
Choi, Jonghyun
Bhattarai, Romakanta
Poudel, Tej P.
Gupta, Ram Krishna
Shen, Xiao
Mishra, Sanjay R.
description In this study, hydrothermally produced Fe-doped Co3O4 nanostructured particles are investigated as electrocatalysts for the water-splitting process and electrode materials for supercapacitor devices. The results of the experiments demonstrated that the surface area, specific capacitance, and electrochemical performance of Co3O4 are all influenced by Fe3+ content. The FexCo3-xO4 with x = 1 sample exhibits a higher BET surface (87.45 m2/g) than that of the pristine Co3O4 (59.4 m2/g). Electrochemical measurements of the electrode carried out in 3 M KOH reveal a high specific capacitance of 153 F/g at a current density of 1 A/g for x = 0.6 and 684 F/g at a 2 mV/s scan rate for x = 1.0 samples. In terms of electrocatalytic performance, the electrode (x = 1.0) displayed a low overpotential of 266 mV (at a current density of 10 mA/cm2) along with 52 mV/dec Tafel slopes in the oxygen evolution reaction. Additionally, the overpotential of 132 mV (at a current density of 10 mA/cm2) and 109 mV with 52 mV/dec Tafel slope were obtained for x = 0.6 sample towards hydrogen evolution reaction (HER). According to electrochemical impedance spectroscopy (EIS) measurements and the density functional theory (DFT) study, the addition of Fe3+ increased the conductivity at the electrode–electrolyte interface, which substantially impacted the high activity of the iron-doped cobalt oxide. The electrochemical results revealed that the mesoporous Fe-doped Co3O4 nanostructure could be used as potential electrode material in the high-performance electrochemical capacitor and water-splitting catalysts.
doi_str_mv 10.3390/pr9122176
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2612841099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612841099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b541463ccd0325dbee068ae68432abe679b97b5e54864991ea2af7d021147dfd3</originalsourceid><addsrcrecordid>eNpNUEtLw0AYXETBUnvwHwQ8eYjuK7vZo9RqC8Uq6Dlsdr_QlCQbv01A_73RijiXmcM8YAi5ZPRGCENvezSMc6bVCZlxznVqNNOn__Q5WcR4oBMME3mmZuRl1YAbMLg9tLWzTfIMWAVsbecgCVWywdCl96EHnyxDaZsh2X3UHpJ1DWjR7X8yT7YLccDRDSPCBTmrbBNh8ctz8vawel2u0-3ucbO826aOGz6kZSaZVMI5TwXPfAlAVW5B5VJwW4LSpjS6zCCTuZLGMLDcVtpTzpjUvvJiTq6OvT2G9xHiUBzCiN00WXDFeC4ZNWZyXR9dDkOMCFXRY91a_CwYLb5PK_5OE1_CPF6X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612841099</pqid></control><display><type>article</type><title>Electrochemical Performance of Iron-Doped Cobalt Oxide Hierarchical Nanostructure</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Guragain, Deepa ; Karna, Sunil ; Choi, Jonghyun ; Bhattarai, Romakanta ; Poudel, Tej P. ; Gupta, Ram Krishna ; Shen, Xiao ; Mishra, Sanjay R.</creator><creatorcontrib>Guragain, Deepa ; Karna, Sunil ; Choi, Jonghyun ; Bhattarai, Romakanta ; Poudel, Tej P. ; Gupta, Ram Krishna ; Shen, Xiao ; Mishra, Sanjay R.</creatorcontrib><description>In this study, hydrothermally produced Fe-doped Co3O4 nanostructured particles are investigated as electrocatalysts for the water-splitting process and electrode materials for supercapacitor devices. The results of the experiments demonstrated that the surface area, specific capacitance, and electrochemical performance of Co3O4 are all influenced by Fe3+ content. The FexCo3-xO4 with x = 1 sample exhibits a higher BET surface (87.45 m2/g) than that of the pristine Co3O4 (59.4 m2/g). Electrochemical measurements of the electrode carried out in 3 M KOH reveal a high specific capacitance of 153 F/g at a current density of 1 A/g for x = 0.6 and 684 F/g at a 2 mV/s scan rate for x = 1.0 samples. In terms of electrocatalytic performance, the electrode (x = 1.0) displayed a low overpotential of 266 mV (at a current density of 10 mA/cm2) along with 52 mV/dec Tafel slopes in the oxygen evolution reaction. Additionally, the overpotential of 132 mV (at a current density of 10 mA/cm2) and 109 mV with 52 mV/dec Tafel slope were obtained for x = 0.6 sample towards hydrogen evolution reaction (HER). According to electrochemical impedance spectroscopy (EIS) measurements and the density functional theory (DFT) study, the addition of Fe3+ increased the conductivity at the electrode–electrolyte interface, which substantially impacted the high activity of the iron-doped cobalt oxide. The electrochemical results revealed that the mesoporous Fe-doped Co3O4 nanostructure could be used as potential electrode material in the high-performance electrochemical capacitor and water-splitting catalysts.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr9122176</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Capacitance ; Catalysts ; Cobalt ; Cobalt oxides ; Current density ; Density functional theory ; Electrocatalysts ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrode materials ; Electrodes ; Electrolytes ; Energy resources ; Hydrogen ; Hydrogen evolution reactions ; Iron ; Metal oxides ; Morphology ; Nanomaterials ; Nanostructure ; Nitrates ; Oxygen evolution reactions ; Spectroscopy ; Spectrum analysis ; Voltammetry ; Water splitting</subject><ispartof>Processes, 2021-12, Vol.9 (12), p.2176</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-b541463ccd0325dbee068ae68432abe679b97b5e54864991ea2af7d021147dfd3</citedby><cites>FETCH-LOGICAL-c292t-b541463ccd0325dbee068ae68432abe679b97b5e54864991ea2af7d021147dfd3</cites><orcidid>0000-0003-4787-5739 ; 0000-0002-7216-8756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guragain, Deepa</creatorcontrib><creatorcontrib>Karna, Sunil</creatorcontrib><creatorcontrib>Choi, Jonghyun</creatorcontrib><creatorcontrib>Bhattarai, Romakanta</creatorcontrib><creatorcontrib>Poudel, Tej P.</creatorcontrib><creatorcontrib>Gupta, Ram Krishna</creatorcontrib><creatorcontrib>Shen, Xiao</creatorcontrib><creatorcontrib>Mishra, Sanjay R.</creatorcontrib><title>Electrochemical Performance of Iron-Doped Cobalt Oxide Hierarchical Nanostructure</title><title>Processes</title><description>In this study, hydrothermally produced Fe-doped Co3O4 nanostructured particles are investigated as electrocatalysts for the water-splitting process and electrode materials for supercapacitor devices. The results of the experiments demonstrated that the surface area, specific capacitance, and electrochemical performance of Co3O4 are all influenced by Fe3+ content. The FexCo3-xO4 with x = 1 sample exhibits a higher BET surface (87.45 m2/g) than that of the pristine Co3O4 (59.4 m2/g). Electrochemical measurements of the electrode carried out in 3 M KOH reveal a high specific capacitance of 153 F/g at a current density of 1 A/g for x = 0.6 and 684 F/g at a 2 mV/s scan rate for x = 1.0 samples. In terms of electrocatalytic performance, the electrode (x = 1.0) displayed a low overpotential of 266 mV (at a current density of 10 mA/cm2) along with 52 mV/dec Tafel slopes in the oxygen evolution reaction. Additionally, the overpotential of 132 mV (at a current density of 10 mA/cm2) and 109 mV with 52 mV/dec Tafel slope were obtained for x = 0.6 sample towards hydrogen evolution reaction (HER). According to electrochemical impedance spectroscopy (EIS) measurements and the density functional theory (DFT) study, the addition of Fe3+ increased the conductivity at the electrode–electrolyte interface, which substantially impacted the high activity of the iron-doped cobalt oxide. The electrochemical results revealed that the mesoporous Fe-doped Co3O4 nanostructure could be used as potential electrode material in the high-performance electrochemical capacitor and water-splitting catalysts.</description><subject>Alternative energy sources</subject><subject>Capacitance</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>Cobalt oxides</subject><subject>Current density</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy resources</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Iron</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nitrates</subject><subject>Oxygen evolution reactions</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Voltammetry</subject><subject>Water splitting</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUEtLw0AYXETBUnvwHwQ8eYjuK7vZo9RqC8Uq6Dlsdr_QlCQbv01A_73RijiXmcM8YAi5ZPRGCENvezSMc6bVCZlxznVqNNOn__Q5WcR4oBMME3mmZuRl1YAbMLg9tLWzTfIMWAVsbecgCVWywdCl96EHnyxDaZsh2X3UHpJ1DWjR7X8yT7YLccDRDSPCBTmrbBNh8ctz8vawel2u0-3ucbO826aOGz6kZSaZVMI5TwXPfAlAVW5B5VJwW4LSpjS6zCCTuZLGMLDcVtpTzpjUvvJiTq6OvT2G9xHiUBzCiN00WXDFeC4ZNWZyXR9dDkOMCFXRY91a_CwYLb5PK_5OE1_CPF6X</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Guragain, Deepa</creator><creator>Karna, Sunil</creator><creator>Choi, Jonghyun</creator><creator>Bhattarai, Romakanta</creator><creator>Poudel, Tej P.</creator><creator>Gupta, Ram Krishna</creator><creator>Shen, Xiao</creator><creator>Mishra, Sanjay R.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4787-5739</orcidid><orcidid>https://orcid.org/0000-0002-7216-8756</orcidid></search><sort><creationdate>20211201</creationdate><title>Electrochemical Performance of Iron-Doped Cobalt Oxide Hierarchical Nanostructure</title><author>Guragain, Deepa ; Karna, Sunil ; Choi, Jonghyun ; Bhattarai, Romakanta ; Poudel, Tej P. ; Gupta, Ram Krishna ; Shen, Xiao ; Mishra, Sanjay R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b541463ccd0325dbee068ae68432abe679b97b5e54864991ea2af7d021147dfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative energy sources</topic><topic>Capacitance</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>Cobalt oxides</topic><topic>Current density</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy resources</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Iron</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nitrates</topic><topic>Oxygen evolution reactions</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Voltammetry</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guragain, Deepa</creatorcontrib><creatorcontrib>Karna, Sunil</creatorcontrib><creatorcontrib>Choi, Jonghyun</creatorcontrib><creatorcontrib>Bhattarai, Romakanta</creatorcontrib><creatorcontrib>Poudel, Tej P.</creatorcontrib><creatorcontrib>Gupta, Ram Krishna</creatorcontrib><creatorcontrib>Shen, Xiao</creatorcontrib><creatorcontrib>Mishra, Sanjay R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guragain, Deepa</au><au>Karna, Sunil</au><au>Choi, Jonghyun</au><au>Bhattarai, Romakanta</au><au>Poudel, Tej P.</au><au>Gupta, Ram Krishna</au><au>Shen, Xiao</au><au>Mishra, Sanjay R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Performance of Iron-Doped Cobalt Oxide Hierarchical Nanostructure</atitle><jtitle>Processes</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>9</volume><issue>12</issue><spage>2176</spage><pages>2176-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>In this study, hydrothermally produced Fe-doped Co3O4 nanostructured particles are investigated as electrocatalysts for the water-splitting process and electrode materials for supercapacitor devices. The results of the experiments demonstrated that the surface area, specific capacitance, and electrochemical performance of Co3O4 are all influenced by Fe3+ content. The FexCo3-xO4 with x = 1 sample exhibits a higher BET surface (87.45 m2/g) than that of the pristine Co3O4 (59.4 m2/g). Electrochemical measurements of the electrode carried out in 3 M KOH reveal a high specific capacitance of 153 F/g at a current density of 1 A/g for x = 0.6 and 684 F/g at a 2 mV/s scan rate for x = 1.0 samples. In terms of electrocatalytic performance, the electrode (x = 1.0) displayed a low overpotential of 266 mV (at a current density of 10 mA/cm2) along with 52 mV/dec Tafel slopes in the oxygen evolution reaction. Additionally, the overpotential of 132 mV (at a current density of 10 mA/cm2) and 109 mV with 52 mV/dec Tafel slope were obtained for x = 0.6 sample towards hydrogen evolution reaction (HER). According to electrochemical impedance spectroscopy (EIS) measurements and the density functional theory (DFT) study, the addition of Fe3+ increased the conductivity at the electrode–electrolyte interface, which substantially impacted the high activity of the iron-doped cobalt oxide. The electrochemical results revealed that the mesoporous Fe-doped Co3O4 nanostructure could be used as potential electrode material in the high-performance electrochemical capacitor and water-splitting catalysts.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr9122176</doi><orcidid>https://orcid.org/0000-0003-4787-5739</orcidid><orcidid>https://orcid.org/0000-0002-7216-8756</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2021-12, Vol.9 (12), p.2176
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2612841099
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Alternative energy sources
Capacitance
Catalysts
Cobalt
Cobalt oxides
Current density
Density functional theory
Electrocatalysts
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrode materials
Electrodes
Electrolytes
Energy resources
Hydrogen
Hydrogen evolution reactions
Iron
Metal oxides
Morphology
Nanomaterials
Nanostructure
Nitrates
Oxygen evolution reactions
Spectroscopy
Spectrum analysis
Voltammetry
Water splitting
title Electrochemical Performance of Iron-Doped Cobalt Oxide Hierarchical Nanostructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Performance%20of%20Iron-Doped%20Cobalt%20Oxide%20Hierarchical%20Nanostructure&rft.jtitle=Processes&rft.au=Guragain,%20Deepa&rft.date=2021-12-01&rft.volume=9&rft.issue=12&rft.spage=2176&rft.pages=2176-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr9122176&rft_dat=%3Cproquest_cross%3E2612841099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612841099&rft_id=info:pmid/&rfr_iscdi=true