Conceptual Process Design, Energy and Economic Analysis of Solid Waste to Hydrocarbon Fuels via Thermochemical Processes
Thermochemical processes use heat and series of endothermic chemical reactions that achieve thermal cracking and convert a wide range of solid waste deposits via four thermochemical processes to hydrocarbon gaseous and liquid products such as syngas, gasoline, and diesel. The four thermochemical rea...
Gespeichert in:
Veröffentlicht in: | Processes 2021-12, Vol.9 (12), p.2149 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 2149 |
container_title | Processes |
container_volume | 9 |
creator | A. Gabbar, Hossam Aboughaly, Mohamed |
description | Thermochemical processes use heat and series of endothermic chemical reactions that achieve thermal cracking and convert a wide range of solid waste deposits via four thermochemical processes to hydrocarbon gaseous and liquid products such as syngas, gasoline, and diesel. The four thermochemical reactions investigated in this research article are: incineration, pyrolysis, gasification, and integrated gasification combined cycle (IGCC). The mentioned thermochemical processes are evaluated for energy recovery pathways and environmental footprint based on conceptual design and Aspen HYSYS energy simulation. This paper also provides conceptual process design for four thermochemical processes as well as process evaluation and techno-economic analysis (TEA) including energy consumption, process optimization, product yield calculations, electricity generation and expected net revenue per tonne of feedstock. The techno-economic analysis provides results for large scale thermochemical process technologies at an industrial level and key performance indicators (KPIs) including greenhouse gaseous emissions, capital and operational costs per tonne, electrical generation per tonne for the four mentioned thermochemical processes. |
doi_str_mv | 10.3390/pr9122149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2612838345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612838345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-79908f36a1673e032787586dc102381c6365d23cad88834d75e23190c09cb0643</originalsourceid><addsrcrecordid>eNpNUMtKw0AUHUTBUrvwDwZcCUbnkcxjWWprhYKCFZdhOjNpU9JMnJuI-XsjFfVuzl2cB-cgdEnJLeea3DVRU8Zoqk_QiDEmEy2pPP33n6MJwJ4MpylXmRihz1morW_azlT4OQbrAfC9h3Jb3-B57eO2x6Z2eG5DHQ6lxdPaVD2UgEOBX0JVOvxmoPW4DXjZu8HAxE2o8aLzFeCP0uD1zsdDsDs_qP8yPFygs8JU4Cc_OEavi_l6tkxWTw-Ps-kqsUyzNpFaE1VwYaiQ3BPOpJKZEs5SwriiVnCROcatcUopnjqZecapJpZouyEi5WN0dfRtYnjvPLT5PnRxaAE5E5QpPqiygXV9ZNkYAKIv8iaWBxP7nJL8e9v8d1v-BW-Sat4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612838345</pqid></control><display><type>article</type><title>Conceptual Process Design, Energy and Economic Analysis of Solid Waste to Hydrocarbon Fuels via Thermochemical Processes</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>A. Gabbar, Hossam ; Aboughaly, Mohamed</creator><creatorcontrib>A. Gabbar, Hossam ; Aboughaly, Mohamed</creatorcontrib><description>Thermochemical processes use heat and series of endothermic chemical reactions that achieve thermal cracking and convert a wide range of solid waste deposits via four thermochemical processes to hydrocarbon gaseous and liquid products such as syngas, gasoline, and diesel. The four thermochemical reactions investigated in this research article are: incineration, pyrolysis, gasification, and integrated gasification combined cycle (IGCC). The mentioned thermochemical processes are evaluated for energy recovery pathways and environmental footprint based on conceptual design and Aspen HYSYS energy simulation. This paper also provides conceptual process design for four thermochemical processes as well as process evaluation and techno-economic analysis (TEA) including energy consumption, process optimization, product yield calculations, electricity generation and expected net revenue per tonne of feedstock. The techno-economic analysis provides results for large scale thermochemical process technologies at an industrial level and key performance indicators (KPIs) including greenhouse gaseous emissions, capital and operational costs per tonne, electrical generation per tonne for the four mentioned thermochemical processes.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr9122149</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acidification ; Atmospheric pressure ; Carbon dioxide ; Carbon footprint ; Carbon monoxide ; Chemical reactions ; Composite materials ; Diesel fuels ; Economic analysis ; Efficiency ; Emissions ; Endothermic reactions ; Energy consumption ; Energy recovery ; Gases ; Gasification ; Gasoline ; Global warming ; Greenhouse gases ; Hydrocarbon fuels ; Hydrocarbons ; Integrated gasification combined cycle ; Landfill ; Optimization ; Pyrolysis ; Sulfur ; Synthesis gas ; Thermal energy</subject><ispartof>Processes, 2021-12, Vol.9 (12), p.2149</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-79908f36a1673e032787586dc102381c6365d23cad88834d75e23190c09cb0643</citedby><cites>FETCH-LOGICAL-c292t-79908f36a1673e032787586dc102381c6365d23cad88834d75e23190c09cb0643</cites><orcidid>0000-0002-4243-833X ; 0000-0002-8495-5343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>A. Gabbar, Hossam</creatorcontrib><creatorcontrib>Aboughaly, Mohamed</creatorcontrib><title>Conceptual Process Design, Energy and Economic Analysis of Solid Waste to Hydrocarbon Fuels via Thermochemical Processes</title><title>Processes</title><description>Thermochemical processes use heat and series of endothermic chemical reactions that achieve thermal cracking and convert a wide range of solid waste deposits via four thermochemical processes to hydrocarbon gaseous and liquid products such as syngas, gasoline, and diesel. The four thermochemical reactions investigated in this research article are: incineration, pyrolysis, gasification, and integrated gasification combined cycle (IGCC). The mentioned thermochemical processes are evaluated for energy recovery pathways and environmental footprint based on conceptual design and Aspen HYSYS energy simulation. This paper also provides conceptual process design for four thermochemical processes as well as process evaluation and techno-economic analysis (TEA) including energy consumption, process optimization, product yield calculations, electricity generation and expected net revenue per tonne of feedstock. The techno-economic analysis provides results for large scale thermochemical process technologies at an industrial level and key performance indicators (KPIs) including greenhouse gaseous emissions, capital and operational costs per tonne, electrical generation per tonne for the four mentioned thermochemical processes.</description><subject>Acidification</subject><subject>Atmospheric pressure</subject><subject>Carbon dioxide</subject><subject>Carbon footprint</subject><subject>Carbon monoxide</subject><subject>Chemical reactions</subject><subject>Composite materials</subject><subject>Diesel fuels</subject><subject>Economic analysis</subject><subject>Efficiency</subject><subject>Emissions</subject><subject>Endothermic reactions</subject><subject>Energy consumption</subject><subject>Energy recovery</subject><subject>Gases</subject><subject>Gasification</subject><subject>Gasoline</subject><subject>Global warming</subject><subject>Greenhouse gases</subject><subject>Hydrocarbon fuels</subject><subject>Hydrocarbons</subject><subject>Integrated gasification combined cycle</subject><subject>Landfill</subject><subject>Optimization</subject><subject>Pyrolysis</subject><subject>Sulfur</subject><subject>Synthesis gas</subject><subject>Thermal energy</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUMtKw0AUHUTBUrvwDwZcCUbnkcxjWWprhYKCFZdhOjNpU9JMnJuI-XsjFfVuzl2cB-cgdEnJLeea3DVRU8Zoqk_QiDEmEy2pPP33n6MJwJ4MpylXmRihz1morW_azlT4OQbrAfC9h3Jb3-B57eO2x6Z2eG5DHQ6lxdPaVD2UgEOBX0JVOvxmoPW4DXjZu8HAxE2o8aLzFeCP0uD1zsdDsDs_qP8yPFygs8JU4Cc_OEavi_l6tkxWTw-Ps-kqsUyzNpFaE1VwYaiQ3BPOpJKZEs5SwriiVnCROcatcUopnjqZecapJpZouyEi5WN0dfRtYnjvPLT5PnRxaAE5E5QpPqiygXV9ZNkYAKIv8iaWBxP7nJL8e9v8d1v-BW-Sat4</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>A. Gabbar, Hossam</creator><creator>Aboughaly, Mohamed</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4243-833X</orcidid><orcidid>https://orcid.org/0000-0002-8495-5343</orcidid></search><sort><creationdate>20211201</creationdate><title>Conceptual Process Design, Energy and Economic Analysis of Solid Waste to Hydrocarbon Fuels via Thermochemical Processes</title><author>A. Gabbar, Hossam ; Aboughaly, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-79908f36a1673e032787586dc102381c6365d23cad88834d75e23190c09cb0643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acidification</topic><topic>Atmospheric pressure</topic><topic>Carbon dioxide</topic><topic>Carbon footprint</topic><topic>Carbon monoxide</topic><topic>Chemical reactions</topic><topic>Composite materials</topic><topic>Diesel fuels</topic><topic>Economic analysis</topic><topic>Efficiency</topic><topic>Emissions</topic><topic>Endothermic reactions</topic><topic>Energy consumption</topic><topic>Energy recovery</topic><topic>Gases</topic><topic>Gasification</topic><topic>Gasoline</topic><topic>Global warming</topic><topic>Greenhouse gases</topic><topic>Hydrocarbon fuels</topic><topic>Hydrocarbons</topic><topic>Integrated gasification combined cycle</topic><topic>Landfill</topic><topic>Optimization</topic><topic>Pyrolysis</topic><topic>Sulfur</topic><topic>Synthesis gas</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>A. Gabbar, Hossam</creatorcontrib><creatorcontrib>Aboughaly, Mohamed</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>A. Gabbar, Hossam</au><au>Aboughaly, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conceptual Process Design, Energy and Economic Analysis of Solid Waste to Hydrocarbon Fuels via Thermochemical Processes</atitle><jtitle>Processes</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>9</volume><issue>12</issue><spage>2149</spage><pages>2149-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Thermochemical processes use heat and series of endothermic chemical reactions that achieve thermal cracking and convert a wide range of solid waste deposits via four thermochemical processes to hydrocarbon gaseous and liquid products such as syngas, gasoline, and diesel. The four thermochemical reactions investigated in this research article are: incineration, pyrolysis, gasification, and integrated gasification combined cycle (IGCC). The mentioned thermochemical processes are evaluated for energy recovery pathways and environmental footprint based on conceptual design and Aspen HYSYS energy simulation. This paper also provides conceptual process design for four thermochemical processes as well as process evaluation and techno-economic analysis (TEA) including energy consumption, process optimization, product yield calculations, electricity generation and expected net revenue per tonne of feedstock. The techno-economic analysis provides results for large scale thermochemical process technologies at an industrial level and key performance indicators (KPIs) including greenhouse gaseous emissions, capital and operational costs per tonne, electrical generation per tonne for the four mentioned thermochemical processes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr9122149</doi><orcidid>https://orcid.org/0000-0002-4243-833X</orcidid><orcidid>https://orcid.org/0000-0002-8495-5343</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2021-12, Vol.9 (12), p.2149 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2612838345 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Acidification Atmospheric pressure Carbon dioxide Carbon footprint Carbon monoxide Chemical reactions Composite materials Diesel fuels Economic analysis Efficiency Emissions Endothermic reactions Energy consumption Energy recovery Gases Gasification Gasoline Global warming Greenhouse gases Hydrocarbon fuels Hydrocarbons Integrated gasification combined cycle Landfill Optimization Pyrolysis Sulfur Synthesis gas Thermal energy |
title | Conceptual Process Design, Energy and Economic Analysis of Solid Waste to Hydrocarbon Fuels via Thermochemical Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conceptual%20Process%20Design,%20Energy%20and%20Economic%20Analysis%20of%20Solid%20Waste%20to%20Hydrocarbon%20Fuels%20via%20Thermochemical%20Processes&rft.jtitle=Processes&rft.au=A.%20Gabbar,%20Hossam&rft.date=2021-12-01&rft.volume=9&rft.issue=12&rft.spage=2149&rft.pages=2149-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr9122149&rft_dat=%3Cproquest_cross%3E2612838345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612838345&rft_id=info:pmid/&rfr_iscdi=true |