Reducing the Dimensions of the Stochastic Programming Problems of Metallurgical Design Procedures
Process design procedures under uncertainty result in stochastic optimization problems whose resolution is complex due to the large uncertainty space, which hinders the application of optimization approaches, as well as the establishment of relationships between input and output variables. On the ot...
Gespeichert in:
Veröffentlicht in: | Minerals (Basel) 2021-12, Vol.11 (12), p.1302 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 1302 |
container_title | Minerals (Basel) |
container_volume | 11 |
creator | Lucay, Freddy A. |
description | Process design procedures under uncertainty result in stochastic optimization problems whose resolution is complex due to the large uncertainty space, which hinders the application of optimization approaches, as well as the establishment of relationships between input and output variables. On the other hand, supervised machine learning (SML) offers tools with which to develop surrogate models, which are computationally inexpensive and efficient. This paper proposes a procedure based on modern design of experiments, deterministic optimization, SML tools, and global sensitivity analysis (GSA) to reduce the size of the uncertainty space for stochastic optimization problems. The proposal is illustrated with a case study based on the stochastic design of flotation plants. The results reveal that surrogate models of stochastic formulation enable the prediction of the structure, profitability parameters, and metallurgical parameters of designed flotation plants, as well as reducing the size of the uncertainty space via GSA and, consequently, establishing relationships between the input and output variables of the stochastic formulation. |
doi_str_mv | 10.3390/min11121302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2612811245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612811245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-73423ee71a015a9ede3780ed8c274929e57b33b3d414f187e35c564a3f7a9f5d3</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouKx78g8UPEo1yTRNc5Rdv2BF8QO8lTSddrO0zZq0B_-97a6Hncu8DA_vwEPIJaM3AIretrZjjHEGlJ-QGadSxCyF79OjfE4WIWzpOIpBJviM6HcsB2O7Ouo3GK1si12wrguRq_aXj96ZjQ69NdGbd7XXbTvBYy4abPfYC_a6aQZfW6ObaIXB1t0EmLHZY7ggZ5VuAi7-95x8Pdx_Lp_i9evj8_JuHRuusj6WkHBAlExTJrTCEkFmFMvMcJkorlDIAqCAMmFJxTKJIIxIEw2V1KoSJczJ1aF3593PgKHPt27w3fgy5ynj2agmESN1faCMdyF4rPKdt632vzmj-aQxP9IIf5OhZY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612811245</pqid></control><display><type>article</type><title>Reducing the Dimensions of the Stochastic Programming Problems of Metallurgical Design Procedures</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lucay, Freddy A.</creator><creatorcontrib>Lucay, Freddy A.</creatorcontrib><description>Process design procedures under uncertainty result in stochastic optimization problems whose resolution is complex due to the large uncertainty space, which hinders the application of optimization approaches, as well as the establishment of relationships between input and output variables. On the other hand, supervised machine learning (SML) offers tools with which to develop surrogate models, which are computationally inexpensive and efficient. This paper proposes a procedure based on modern design of experiments, deterministic optimization, SML tools, and global sensitivity analysis (GSA) to reduce the size of the uncertainty space for stochastic optimization problems. The proposal is illustrated with a case study based on the stochastic design of flotation plants. The results reveal that surrogate models of stochastic formulation enable the prediction of the structure, profitability parameters, and metallurgical parameters of designed flotation plants, as well as reducing the size of the uncertainty space via GSA and, consequently, establishing relationships between the input and output variables of the stochastic formulation.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min11121302</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Batch processes ; Capital expenditures ; Classification ; Design ; Design of experiments ; Design optimization ; Dimensions ; Economics ; Flotation ; Learning algorithms ; Linear programming ; Machine learning ; Mathematical models ; Mathematical programming ; Metallurgy ; Optimization ; Parameters ; Procedures ; Profitability ; Sensitivity analysis ; Stochastic programming ; Uncertainty ; Variables</subject><ispartof>Minerals (Basel), 2021-12, Vol.11 (12), p.1302</ispartof><rights>2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-73423ee71a015a9ede3780ed8c274929e57b33b3d414f187e35c564a3f7a9f5d3</citedby><cites>FETCH-LOGICAL-c298t-73423ee71a015a9ede3780ed8c274929e57b33b3d414f187e35c564a3f7a9f5d3</cites><orcidid>0000-0001-6690-9450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lucay, Freddy A.</creatorcontrib><title>Reducing the Dimensions of the Stochastic Programming Problems of Metallurgical Design Procedures</title><title>Minerals (Basel)</title><description>Process design procedures under uncertainty result in stochastic optimization problems whose resolution is complex due to the large uncertainty space, which hinders the application of optimization approaches, as well as the establishment of relationships between input and output variables. On the other hand, supervised machine learning (SML) offers tools with which to develop surrogate models, which are computationally inexpensive and efficient. This paper proposes a procedure based on modern design of experiments, deterministic optimization, SML tools, and global sensitivity analysis (GSA) to reduce the size of the uncertainty space for stochastic optimization problems. The proposal is illustrated with a case study based on the stochastic design of flotation plants. The results reveal that surrogate models of stochastic formulation enable the prediction of the structure, profitability parameters, and metallurgical parameters of designed flotation plants, as well as reducing the size of the uncertainty space via GSA and, consequently, establishing relationships between the input and output variables of the stochastic formulation.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Batch processes</subject><subject>Capital expenditures</subject><subject>Classification</subject><subject>Design</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Dimensions</subject><subject>Economics</subject><subject>Flotation</subject><subject>Learning algorithms</subject><subject>Linear programming</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Metallurgy</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Procedures</subject><subject>Profitability</subject><subject>Sensitivity analysis</subject><subject>Stochastic programming</subject><subject>Uncertainty</subject><subject>Variables</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE1LxDAQhoMouKx78g8UPEo1yTRNc5Rdv2BF8QO8lTSddrO0zZq0B_-97a6Hncu8DA_vwEPIJaM3AIretrZjjHEGlJ-QGadSxCyF79OjfE4WIWzpOIpBJviM6HcsB2O7Ouo3GK1si12wrguRq_aXj96ZjQ69NdGbd7XXbTvBYy4abPfYC_a6aQZfW6ObaIXB1t0EmLHZY7ggZ5VuAi7-95x8Pdx_Lp_i9evj8_JuHRuusj6WkHBAlExTJrTCEkFmFMvMcJkorlDIAqCAMmFJxTKJIIxIEw2V1KoSJczJ1aF3593PgKHPt27w3fgy5ynj2agmESN1faCMdyF4rPKdt632vzmj-aQxP9IIf5OhZY8</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Lucay, Freddy A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6690-9450</orcidid></search><sort><creationdate>20211201</creationdate><title>Reducing the Dimensions of the Stochastic Programming Problems of Metallurgical Design Procedures</title><author>Lucay, Freddy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-73423ee71a015a9ede3780ed8c274929e57b33b3d414f187e35c564a3f7a9f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Batch processes</topic><topic>Capital expenditures</topic><topic>Classification</topic><topic>Design</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Dimensions</topic><topic>Economics</topic><topic>Flotation</topic><topic>Learning algorithms</topic><topic>Linear programming</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Metallurgy</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Procedures</topic><topic>Profitability</topic><topic>Sensitivity analysis</topic><topic>Stochastic programming</topic><topic>Uncertainty</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucay, Freddy A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucay, Freddy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing the Dimensions of the Stochastic Programming Problems of Metallurgical Design Procedures</atitle><jtitle>Minerals (Basel)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>12</issue><spage>1302</spage><pages>1302-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>Process design procedures under uncertainty result in stochastic optimization problems whose resolution is complex due to the large uncertainty space, which hinders the application of optimization approaches, as well as the establishment of relationships between input and output variables. On the other hand, supervised machine learning (SML) offers tools with which to develop surrogate models, which are computationally inexpensive and efficient. This paper proposes a procedure based on modern design of experiments, deterministic optimization, SML tools, and global sensitivity analysis (GSA) to reduce the size of the uncertainty space for stochastic optimization problems. The proposal is illustrated with a case study based on the stochastic design of flotation plants. The results reveal that surrogate models of stochastic formulation enable the prediction of the structure, profitability parameters, and metallurgical parameters of designed flotation plants, as well as reducing the size of the uncertainty space via GSA and, consequently, establishing relationships between the input and output variables of the stochastic formulation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min11121302</doi><orcidid>https://orcid.org/0000-0001-6690-9450</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-163X |
ispartof | Minerals (Basel), 2021-12, Vol.11 (12), p.1302 |
issn | 2075-163X 2075-163X |
language | eng |
recordid | cdi_proquest_journals_2612811245 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial intelligence Batch processes Capital expenditures Classification Design Design of experiments Design optimization Dimensions Economics Flotation Learning algorithms Linear programming Machine learning Mathematical models Mathematical programming Metallurgy Optimization Parameters Procedures Profitability Sensitivity analysis Stochastic programming Uncertainty Variables |
title | Reducing the Dimensions of the Stochastic Programming Problems of Metallurgical Design Procedures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20the%20Dimensions%20of%20the%20Stochastic%20Programming%20Problems%20of%20Metallurgical%20Design%20Procedures&rft.jtitle=Minerals%20(Basel)&rft.au=Lucay,%20Freddy%20A.&rft.date=2021-12-01&rft.volume=11&rft.issue=12&rft.spage=1302&rft.pages=1302-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min11121302&rft_dat=%3Cproquest_cross%3E2612811245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612811245&rft_id=info:pmid/&rfr_iscdi=true |