Reducing the Dimensions of the Stochastic Programming Problems of Metallurgical Design Procedures

Process design procedures under uncertainty result in stochastic optimization problems whose resolution is complex due to the large uncertainty space, which hinders the application of optimization approaches, as well as the establishment of relationships between input and output variables. On the ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2021-12, Vol.11 (12), p.1302
1. Verfasser: Lucay, Freddy A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1302
container_title Minerals (Basel)
container_volume 11
creator Lucay, Freddy A.
description Process design procedures under uncertainty result in stochastic optimization problems whose resolution is complex due to the large uncertainty space, which hinders the application of optimization approaches, as well as the establishment of relationships between input and output variables. On the other hand, supervised machine learning (SML) offers tools with which to develop surrogate models, which are computationally inexpensive and efficient. This paper proposes a procedure based on modern design of experiments, deterministic optimization, SML tools, and global sensitivity analysis (GSA) to reduce the size of the uncertainty space for stochastic optimization problems. The proposal is illustrated with a case study based on the stochastic design of flotation plants. The results reveal that surrogate models of stochastic formulation enable the prediction of the structure, profitability parameters, and metallurgical parameters of designed flotation plants, as well as reducing the size of the uncertainty space via GSA and, consequently, establishing relationships between the input and output variables of the stochastic formulation.
doi_str_mv 10.3390/min11121302
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2612811245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612811245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-73423ee71a015a9ede3780ed8c274929e57b33b3d414f187e35c564a3f7a9f5d3</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouKx78g8UPEo1yTRNc5Rdv2BF8QO8lTSddrO0zZq0B_-97a6Hncu8DA_vwEPIJaM3AIretrZjjHEGlJ-QGadSxCyF79OjfE4WIWzpOIpBJviM6HcsB2O7Ouo3GK1si12wrguRq_aXj96ZjQ69NdGbd7XXbTvBYy4abPfYC_a6aQZfW6ObaIXB1t0EmLHZY7ggZ5VuAi7-95x8Pdx_Lp_i9evj8_JuHRuusj6WkHBAlExTJrTCEkFmFMvMcJkorlDIAqCAMmFJxTKJIIxIEw2V1KoSJczJ1aF3593PgKHPt27w3fgy5ynj2agmESN1faCMdyF4rPKdt632vzmj-aQxP9IIf5OhZY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612811245</pqid></control><display><type>article</type><title>Reducing the Dimensions of the Stochastic Programming Problems of Metallurgical Design Procedures</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lucay, Freddy A.</creator><creatorcontrib>Lucay, Freddy A.</creatorcontrib><description>Process design procedures under uncertainty result in stochastic optimization problems whose resolution is complex due to the large uncertainty space, which hinders the application of optimization approaches, as well as the establishment of relationships between input and output variables. On the other hand, supervised machine learning (SML) offers tools with which to develop surrogate models, which are computationally inexpensive and efficient. This paper proposes a procedure based on modern design of experiments, deterministic optimization, SML tools, and global sensitivity analysis (GSA) to reduce the size of the uncertainty space for stochastic optimization problems. The proposal is illustrated with a case study based on the stochastic design of flotation plants. The results reveal that surrogate models of stochastic formulation enable the prediction of the structure, profitability parameters, and metallurgical parameters of designed flotation plants, as well as reducing the size of the uncertainty space via GSA and, consequently, establishing relationships between the input and output variables of the stochastic formulation.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min11121302</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Batch processes ; Capital expenditures ; Classification ; Design ; Design of experiments ; Design optimization ; Dimensions ; Economics ; Flotation ; Learning algorithms ; Linear programming ; Machine learning ; Mathematical models ; Mathematical programming ; Metallurgy ; Optimization ; Parameters ; Procedures ; Profitability ; Sensitivity analysis ; Stochastic programming ; Uncertainty ; Variables</subject><ispartof>Minerals (Basel), 2021-12, Vol.11 (12), p.1302</ispartof><rights>2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-73423ee71a015a9ede3780ed8c274929e57b33b3d414f187e35c564a3f7a9f5d3</citedby><cites>FETCH-LOGICAL-c298t-73423ee71a015a9ede3780ed8c274929e57b33b3d414f187e35c564a3f7a9f5d3</cites><orcidid>0000-0001-6690-9450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lucay, Freddy A.</creatorcontrib><title>Reducing the Dimensions of the Stochastic Programming Problems of Metallurgical Design Procedures</title><title>Minerals (Basel)</title><description>Process design procedures under uncertainty result in stochastic optimization problems whose resolution is complex due to the large uncertainty space, which hinders the application of optimization approaches, as well as the establishment of relationships between input and output variables. On the other hand, supervised machine learning (SML) offers tools with which to develop surrogate models, which are computationally inexpensive and efficient. This paper proposes a procedure based on modern design of experiments, deterministic optimization, SML tools, and global sensitivity analysis (GSA) to reduce the size of the uncertainty space for stochastic optimization problems. The proposal is illustrated with a case study based on the stochastic design of flotation plants. The results reveal that surrogate models of stochastic formulation enable the prediction of the structure, profitability parameters, and metallurgical parameters of designed flotation plants, as well as reducing the size of the uncertainty space via GSA and, consequently, establishing relationships between the input and output variables of the stochastic formulation.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Batch processes</subject><subject>Capital expenditures</subject><subject>Classification</subject><subject>Design</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Dimensions</subject><subject>Economics</subject><subject>Flotation</subject><subject>Learning algorithms</subject><subject>Linear programming</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Metallurgy</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Procedures</subject><subject>Profitability</subject><subject>Sensitivity analysis</subject><subject>Stochastic programming</subject><subject>Uncertainty</subject><subject>Variables</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE1LxDAQhoMouKx78g8UPEo1yTRNc5Rdv2BF8QO8lTSddrO0zZq0B_-97a6Hncu8DA_vwEPIJaM3AIretrZjjHEGlJ-QGadSxCyF79OjfE4WIWzpOIpBJviM6HcsB2O7Ouo3GK1si12wrguRq_aXj96ZjQ69NdGbd7XXbTvBYy4abPfYC_a6aQZfW6ObaIXB1t0EmLHZY7ggZ5VuAi7-95x8Pdx_Lp_i9evj8_JuHRuusj6WkHBAlExTJrTCEkFmFMvMcJkorlDIAqCAMmFJxTKJIIxIEw2V1KoSJczJ1aF3593PgKHPt27w3fgy5ynj2agmESN1faCMdyF4rPKdt632vzmj-aQxP9IIf5OhZY8</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Lucay, Freddy A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6690-9450</orcidid></search><sort><creationdate>20211201</creationdate><title>Reducing the Dimensions of the Stochastic Programming Problems of Metallurgical Design Procedures</title><author>Lucay, Freddy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-73423ee71a015a9ede3780ed8c274929e57b33b3d414f187e35c564a3f7a9f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Batch processes</topic><topic>Capital expenditures</topic><topic>Classification</topic><topic>Design</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Dimensions</topic><topic>Economics</topic><topic>Flotation</topic><topic>Learning algorithms</topic><topic>Linear programming</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Metallurgy</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Procedures</topic><topic>Profitability</topic><topic>Sensitivity analysis</topic><topic>Stochastic programming</topic><topic>Uncertainty</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucay, Freddy A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucay, Freddy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing the Dimensions of the Stochastic Programming Problems of Metallurgical Design Procedures</atitle><jtitle>Minerals (Basel)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>12</issue><spage>1302</spage><pages>1302-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>Process design procedures under uncertainty result in stochastic optimization problems whose resolution is complex due to the large uncertainty space, which hinders the application of optimization approaches, as well as the establishment of relationships between input and output variables. On the other hand, supervised machine learning (SML) offers tools with which to develop surrogate models, which are computationally inexpensive and efficient. This paper proposes a procedure based on modern design of experiments, deterministic optimization, SML tools, and global sensitivity analysis (GSA) to reduce the size of the uncertainty space for stochastic optimization problems. The proposal is illustrated with a case study based on the stochastic design of flotation plants. The results reveal that surrogate models of stochastic formulation enable the prediction of the structure, profitability parameters, and metallurgical parameters of designed flotation plants, as well as reducing the size of the uncertainty space via GSA and, consequently, establishing relationships between the input and output variables of the stochastic formulation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min11121302</doi><orcidid>https://orcid.org/0000-0001-6690-9450</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-163X
ispartof Minerals (Basel), 2021-12, Vol.11 (12), p.1302
issn 2075-163X
2075-163X
language eng
recordid cdi_proquest_journals_2612811245
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Batch processes
Capital expenditures
Classification
Design
Design of experiments
Design optimization
Dimensions
Economics
Flotation
Learning algorithms
Linear programming
Machine learning
Mathematical models
Mathematical programming
Metallurgy
Optimization
Parameters
Procedures
Profitability
Sensitivity analysis
Stochastic programming
Uncertainty
Variables
title Reducing the Dimensions of the Stochastic Programming Problems of Metallurgical Design Procedures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20the%20Dimensions%20of%20the%20Stochastic%20Programming%20Problems%20of%20Metallurgical%20Design%20Procedures&rft.jtitle=Minerals%20(Basel)&rft.au=Lucay,%20Freddy%20A.&rft.date=2021-12-01&rft.volume=11&rft.issue=12&rft.spage=1302&rft.pages=1302-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min11121302&rft_dat=%3Cproquest_cross%3E2612811245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612811245&rft_id=info:pmid/&rfr_iscdi=true