Performance Evaluation of the Priority Multi-Server System MMAP/PH/M/N Using Machine Learning Methods
In this paper, we present the results of a study of a priority multi-server queuing system with heterogeneous customers arriving according to a marked Markovian arrival process (MMAP), phase-type service times (PH), and a queue with finite capacity. Priority traffic classes differ in PH distribution...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2021-12, Vol.9 (24), p.3236, Article 3236 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 3236 |
container_title | Mathematics (Basel) |
container_volume | 9 |
creator | Vishnevsky, Vladimir Klimenok, Valentina Sokolov, Alexander Larionov, Andrey |
description | In this paper, we present the results of a study of a priority multi-server queuing system with heterogeneous customers arriving according to a marked Markovian arrival process (MMAP), phase-type service times (PH), and a queue with finite capacity. Priority traffic classes differ in PH distributions of the service time and the probability of joining the queue, which depends on the current length of the queue. If the queue is full, the customer does not enter the system. An analytical model has been developed and studied for a particular case of a queueing system with two priority classes. We present an algorithm for calculating stationary probabilities of the system state, loss probabilities, the average number of customers in the queue, and other performance characteristics for this particular case. For the general case with K priority classes, a new method for assessing the performance characteristics of complex priority systems has been developed, based on a combination of machine learning and simulation methods. We demonstrate the high efficiency of the new method by providing numerical examples. |
doi_str_mv | 10.3390/math9243236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2612795808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6329d676d6024a19872ffa963a13b577</doaj_id><sourcerecordid>2612795808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-ef2701e97725e1d97da6e66142f70bc7ddf63a4c9d56f0ac536b5c6e7442364b3</originalsourceid><addsrcrecordid>eNqNkctuGyEYRkdVKzVKs-oLIHVZTc1tYFhGVtpE8qSW0qwRAz8xlj2kwKTy25fYVZpl2IA-HT4up2k-E_yNMYUXe1M2inJGmXjXnFFKZStr_v7V-mNzkfMW16EI67k6a2ANyce0N5MFdPVkdrMpIU4oelQ2gNYpxBTKAQ3zroT2DtITJHR3yAX2aBgu14v19WJY3KL7HKYHNBi7CROgFZg0HQMom-jyp-aDN7sMF__m8-b--9Wv5XW7-vnjZnm5ai0TvLTgqcQElJS0A-KUdEaAEIRTL_FopXNeMMOtcp3w2NiOibGzAiTn9dF8ZOfNzanXRbPVjynsTTroaII-BjE9aJNKsDvQglHlhBROYMoNUb2k3htV-wkbOylr15dT12OKv2fIRW_jnKZ6fU0FoVJ1Pe4r9fVE2RRzTuBfTiVYP2vRr7T8p__AGH22Aeq3v-yoWiTrul7xZ0Ok0v3b6WUoR3PLOE-F_QUf0Z7S</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612795808</pqid></control><display><type>article</type><title>Performance Evaluation of the Priority Multi-Server System MMAP/PH/M/N Using Machine Learning Methods</title><source>Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB Electronic Journals Library</source><creator>Vishnevsky, Vladimir ; Klimenok, Valentina ; Sokolov, Alexander ; Larionov, Andrey</creator><creatorcontrib>Vishnevsky, Vladimir ; Klimenok, Valentina ; Sokolov, Alexander ; Larionov, Andrey</creatorcontrib><description>In this paper, we present the results of a study of a priority multi-server queuing system with heterogeneous customers arriving according to a marked Markovian arrival process (MMAP), phase-type service times (PH), and a queue with finite capacity. Priority traffic classes differ in PH distributions of the service time and the probability of joining the queue, which depends on the current length of the queue. If the queue is full, the customer does not enter the system. An analytical model has been developed and studied for a particular case of a queueing system with two priority classes. We present an algorithm for calculating stationary probabilities of the system state, loss probabilities, the average number of customers in the queue, and other performance characteristics for this particular case. For the general case with K priority classes, a new method for assessing the performance characteristics of complex priority systems has been developed, based on a combination of machine learning and simulation methods. We demonstrate the high efficiency of the new method by providing numerical examples.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math9243236</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Algorithms ; Computer networks ; Customer services ; Customers ; Finite capacity ; heterogeneous customers ; Internet of Things ; loss probabilities ; Machine learning ; marked Markovian arrival process ; Markov analysis ; Mathematics ; multi-server queueing system ; Performance evaluation ; Physical Sciences ; priorities ; Priority systems ; Probability ; Queuing theory ; Science & Technology ; Servers ; Traffic capacity</subject><ispartof>Mathematics (Basel), 2021-12, Vol.9 (24), p.3236, Article 3236</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000735589400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c364t-ef2701e97725e1d97da6e66142f70bc7ddf63a4c9d56f0ac536b5c6e7442364b3</citedby><cites>FETCH-LOGICAL-c364t-ef2701e97725e1d97da6e66142f70bc7ddf63a4c9d56f0ac536b5c6e7442364b3</cites><orcidid>0000-0002-3589-5700 ; 0000-0001-7373-4847 ; 0000-0003-0539-0442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Vishnevsky, Vladimir</creatorcontrib><creatorcontrib>Klimenok, Valentina</creatorcontrib><creatorcontrib>Sokolov, Alexander</creatorcontrib><creatorcontrib>Larionov, Andrey</creatorcontrib><title>Performance Evaluation of the Priority Multi-Server System MMAP/PH/M/N Using Machine Learning Methods</title><title>Mathematics (Basel)</title><addtitle>MATHEMATICS-BASEL</addtitle><description>In this paper, we present the results of a study of a priority multi-server queuing system with heterogeneous customers arriving according to a marked Markovian arrival process (MMAP), phase-type service times (PH), and a queue with finite capacity. Priority traffic classes differ in PH distributions of the service time and the probability of joining the queue, which depends on the current length of the queue. If the queue is full, the customer does not enter the system. An analytical model has been developed and studied for a particular case of a queueing system with two priority classes. We present an algorithm for calculating stationary probabilities of the system state, loss probabilities, the average number of customers in the queue, and other performance characteristics for this particular case. For the general case with K priority classes, a new method for assessing the performance characteristics of complex priority systems has been developed, based on a combination of machine learning and simulation methods. We demonstrate the high efficiency of the new method by providing numerical examples.</description><subject>Algorithms</subject><subject>Computer networks</subject><subject>Customer services</subject><subject>Customers</subject><subject>Finite capacity</subject><subject>heterogeneous customers</subject><subject>Internet of Things</subject><subject>loss probabilities</subject><subject>Machine learning</subject><subject>marked Markovian arrival process</subject><subject>Markov analysis</subject><subject>Mathematics</subject><subject>multi-server queueing system</subject><subject>Performance evaluation</subject><subject>Physical Sciences</subject><subject>priorities</subject><subject>Priority systems</subject><subject>Probability</subject><subject>Queuing theory</subject><subject>Science & Technology</subject><subject>Servers</subject><subject>Traffic capacity</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkctuGyEYRkdVKzVKs-oLIHVZTc1tYFhGVtpE8qSW0qwRAz8xlj2kwKTy25fYVZpl2IA-HT4up2k-E_yNMYUXe1M2inJGmXjXnFFKZStr_v7V-mNzkfMW16EI67k6a2ANyce0N5MFdPVkdrMpIU4oelQ2gNYpxBTKAQ3zroT2DtITJHR3yAX2aBgu14v19WJY3KL7HKYHNBi7CROgFZg0HQMom-jyp-aDN7sMF__m8-b--9Wv5XW7-vnjZnm5ai0TvLTgqcQElJS0A-KUdEaAEIRTL_FopXNeMMOtcp3w2NiOibGzAiTn9dF8ZOfNzanXRbPVjynsTTroaII-BjE9aJNKsDvQglHlhBROYMoNUb2k3htV-wkbOylr15dT12OKv2fIRW_jnKZ6fU0FoVJ1Pe4r9fVE2RRzTuBfTiVYP2vRr7T8p__AGH22Aeq3v-yoWiTrul7xZ0Ok0v3b6WUoR3PLOE-F_QUf0Z7S</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Vishnevsky, Vladimir</creator><creator>Klimenok, Valentina</creator><creator>Sokolov, Alexander</creator><creator>Larionov, Andrey</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3589-5700</orcidid><orcidid>https://orcid.org/0000-0001-7373-4847</orcidid><orcidid>https://orcid.org/0000-0003-0539-0442</orcidid></search><sort><creationdate>20211201</creationdate><title>Performance Evaluation of the Priority Multi-Server System MMAP/PH/M/N Using Machine Learning Methods</title><author>Vishnevsky, Vladimir ; Klimenok, Valentina ; Sokolov, Alexander ; Larionov, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-ef2701e97725e1d97da6e66142f70bc7ddf63a4c9d56f0ac536b5c6e7442364b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer networks</topic><topic>Customer services</topic><topic>Customers</topic><topic>Finite capacity</topic><topic>heterogeneous customers</topic><topic>Internet of Things</topic><topic>loss probabilities</topic><topic>Machine learning</topic><topic>marked Markovian arrival process</topic><topic>Markov analysis</topic><topic>Mathematics</topic><topic>multi-server queueing system</topic><topic>Performance evaluation</topic><topic>Physical Sciences</topic><topic>priorities</topic><topic>Priority systems</topic><topic>Probability</topic><topic>Queuing theory</topic><topic>Science & Technology</topic><topic>Servers</topic><topic>Traffic capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vishnevsky, Vladimir</creatorcontrib><creatorcontrib>Klimenok, Valentina</creatorcontrib><creatorcontrib>Sokolov, Alexander</creatorcontrib><creatorcontrib>Larionov, Andrey</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vishnevsky, Vladimir</au><au>Klimenok, Valentina</au><au>Sokolov, Alexander</au><au>Larionov, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Evaluation of the Priority Multi-Server System MMAP/PH/M/N Using Machine Learning Methods</atitle><jtitle>Mathematics (Basel)</jtitle><stitle>MATHEMATICS-BASEL</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>9</volume><issue>24</issue><spage>3236</spage><pages>3236-</pages><artnum>3236</artnum><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>In this paper, we present the results of a study of a priority multi-server queuing system with heterogeneous customers arriving according to a marked Markovian arrival process (MMAP), phase-type service times (PH), and a queue with finite capacity. Priority traffic classes differ in PH distributions of the service time and the probability of joining the queue, which depends on the current length of the queue. If the queue is full, the customer does not enter the system. An analytical model has been developed and studied for a particular case of a queueing system with two priority classes. We present an algorithm for calculating stationary probabilities of the system state, loss probabilities, the average number of customers in the queue, and other performance characteristics for this particular case. For the general case with K priority classes, a new method for assessing the performance characteristics of complex priority systems has been developed, based on a combination of machine learning and simulation methods. We demonstrate the high efficiency of the new method by providing numerical examples.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/math9243236</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-3589-5700</orcidid><orcidid>https://orcid.org/0000-0001-7373-4847</orcidid><orcidid>https://orcid.org/0000-0003-0539-0442</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2021-12, Vol.9 (24), p.3236, Article 3236 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_proquest_journals_2612795808 |
source | Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB Electronic Journals Library |
subjects | Algorithms Computer networks Customer services Customers Finite capacity heterogeneous customers Internet of Things loss probabilities Machine learning marked Markovian arrival process Markov analysis Mathematics multi-server queueing system Performance evaluation Physical Sciences priorities Priority systems Probability Queuing theory Science & Technology Servers Traffic capacity |
title | Performance Evaluation of the Priority Multi-Server System MMAP/PH/M/N Using Machine Learning Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Evaluation%20of%20the%20Priority%20Multi-Server%20System%20MMAP/PH/M/N%20Using%20Machine%20Learning%20Methods&rft.jtitle=Mathematics%20(Basel)&rft.au=Vishnevsky,%20Vladimir&rft.date=2021-12-01&rft.volume=9&rft.issue=24&rft.spage=3236&rft.pages=3236-&rft.artnum=3236&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math9243236&rft_dat=%3Cproquest_webof%3E2612795808%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612795808&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_6329d676d6024a19872ffa963a13b577&rfr_iscdi=true |