Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study
Diamond-like cubic silicon ( d -Si) has become a mainstay material for new energy and modern electronics industries. Nevertheless, such material hosts a high lattice thermal conductivity, resulting in a small thermoelectric figure of merit ( ZT ), which greatly limits its applications in thermoelect...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2021-12, Vol.94 (12), Article 247 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | The European physical journal. B, Condensed matter physics |
container_volume | 94 |
creator | Liu, Zeyu Tan, Na Tang, Chao |
description | Diamond-like cubic silicon (
d
-Si) has become a mainstay material for new energy and modern electronics industries. Nevertheless, such material hosts a high lattice thermal conductivity, resulting in a small thermoelectric figure of merit (
ZT
), which greatly limits its applications in thermoelectric conversion field.
tP
36-Si is a newly predicted allotrope of silicon with direct band gap, and its total energy is close to
d
-Si, which indicates that it is likely to be experimentally prepared in years to come. In this article, the thermoelectric properties of this novel new silicon allotrope are researched by combining semi-classical Boltzmann transport theory with first-principles calculation. Electron transport of this new silicon allotrope possesses obvious anisotropy, while the anisotropy of phonon thermal conductivity is slight. Compared to
d
-Si and other silicon allotropes (Si
24
, oP32-Si), lower lattice thermal conductivity (23.68 W/mK) and higher power factor (72.63 W/mK
2
)
are revealed in
tP
36-Si. Further analysis shows that the lower phonon thermal conductivity principally comes from the inhibition of group velocity and relaxation time of phonon. The thermoelectric performance of
tP
36-Si is evaluated according to the electronic relaxation time obtained from the deformation potential (DP) theory, where the peak value of
ZT
along the
xx
lattice direction of n-type (p-type) under 700 K is close to 2.18 (0.64), which is much above that of Si24(0.69, 0.51) and d-Si(0.07). The finding illustrates the excellent thermoelectric property of
tP
36-Si and demonstrate that this new silicon allotrope is an appropriate and promising potential thermoelectric materials.
Graphic abstract |
doi_str_mv | 10.1140/epjb/s10051-021-00251-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2612764237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A687745624</galeid><sourcerecordid>A687745624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-dee1544461ac487d51b88f85a4023af2ab689ffa47e3ca1f94e4c370cb489b03</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhCMEEqXwG7DEiUOoX3HcY1XxqFQJRHvGctx1SJXGwXYl-u9xCYIjh9XOYWY1-2XZNcF3hHA8gX5bTQLBuCA5pmkwTYqdZCPCGc8FZuL0V1N5nl2EsMUYE0H4KHtbv4PfOWjBRN8Y1IO3zu90ZwA5iyJEr2vX6RaFpm2M65BuWxe96wHFFybyVYOsdztkGx9i3vumM03fQkAh7jeHy-zM6jbA1c8eZ-uH-_X8KV8-Py7ms2VumJAx3wCQgnMuiDZclpuCVFJaWWiOKdOW6krIqbWal8CMJnbKgRtWYlNxOa0wG2c3w9neu489hKi2bu9T66CoILQUnLIyuW4HV61bUKmo6yJ8xlrvQ1CL1auaCVmWvBCUJ285eI13IXiwKr220_6gCFZH7urIXQ3cVeKuvrkrlpJySIYjjBr8X5f_ol-fH4oI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612764237</pqid></control><display><type>article</type><title>Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study</title><source>SpringerLink Journals</source><creator>Liu, Zeyu ; Tan, Na ; Tang, Chao</creator><creatorcontrib>Liu, Zeyu ; Tan, Na ; Tang, Chao</creatorcontrib><description>Diamond-like cubic silicon (
d
-Si) has become a mainstay material for new energy and modern electronics industries. Nevertheless, such material hosts a high lattice thermal conductivity, resulting in a small thermoelectric figure of merit (
ZT
), which greatly limits its applications in thermoelectric conversion field.
tP
36-Si is a newly predicted allotrope of silicon with direct band gap, and its total energy is close to
d
-Si, which indicates that it is likely to be experimentally prepared in years to come. In this article, the thermoelectric properties of this novel new silicon allotrope are researched by combining semi-classical Boltzmann transport theory with first-principles calculation. Electron transport of this new silicon allotrope possesses obvious anisotropy, while the anisotropy of phonon thermal conductivity is slight. Compared to
d
-Si and other silicon allotropes (Si
24
, oP32-Si), lower lattice thermal conductivity (23.68 W/mK) and higher power factor (72.63 W/mK
2
)
are revealed in
tP
36-Si. Further analysis shows that the lower phonon thermal conductivity principally comes from the inhibition of group velocity and relaxation time of phonon. The thermoelectric performance of
tP
36-Si is evaluated according to the electronic relaxation time obtained from the deformation potential (DP) theory, where the peak value of
ZT
along the
xx
lattice direction of n-type (p-type) under 700 K is close to 2.18 (0.64), which is much above that of Si24(0.69, 0.51) and d-Si(0.07). The finding illustrates the excellent thermoelectric property of
tP
36-Si and demonstrate that this new silicon allotrope is an appropriate and promising potential thermoelectric materials.
Graphic abstract</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/s10051-021-00251-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Allotropy ; Analysis ; Anisotropy ; Complex Systems ; Condensed Matter Physics ; Diamonds ; Electric properties ; Electron transport ; Electronics industry ; Figure of merit ; First principles ; Fluid- and Aerodynamics ; Group velocity ; Heat conductivity ; Heat transfer ; Performance evaluation ; Phonons ; Physics ; Physics and Astronomy ; Power factor ; Regular Article - Computational Methods ; Relaxation time ; Silicon ; Solid State Physics ; Thermal conductivity ; Thermoelectric materials ; Thermoelectricity ; Transport theory</subject><ispartof>The European physical journal. B, Condensed matter physics, 2021-12, Vol.94 (12), Article 247</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-dee1544461ac487d51b88f85a4023af2ab689ffa47e3ca1f94e4c370cb489b03</citedby><cites>FETCH-LOGICAL-c368t-dee1544461ac487d51b88f85a4023af2ab689ffa47e3ca1f94e4c370cb489b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/s10051-021-00251-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/s10051-021-00251-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Zeyu</creatorcontrib><creatorcontrib>Tan, Na</creatorcontrib><creatorcontrib>Tang, Chao</creatorcontrib><title>Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>Diamond-like cubic silicon (
d
-Si) has become a mainstay material for new energy and modern electronics industries. Nevertheless, such material hosts a high lattice thermal conductivity, resulting in a small thermoelectric figure of merit (
ZT
), which greatly limits its applications in thermoelectric conversion field.
tP
36-Si is a newly predicted allotrope of silicon with direct band gap, and its total energy is close to
d
-Si, which indicates that it is likely to be experimentally prepared in years to come. In this article, the thermoelectric properties of this novel new silicon allotrope are researched by combining semi-classical Boltzmann transport theory with first-principles calculation. Electron transport of this new silicon allotrope possesses obvious anisotropy, while the anisotropy of phonon thermal conductivity is slight. Compared to
d
-Si and other silicon allotropes (Si
24
, oP32-Si), lower lattice thermal conductivity (23.68 W/mK) and higher power factor (72.63 W/mK
2
)
are revealed in
tP
36-Si. Further analysis shows that the lower phonon thermal conductivity principally comes from the inhibition of group velocity and relaxation time of phonon. The thermoelectric performance of
tP
36-Si is evaluated according to the electronic relaxation time obtained from the deformation potential (DP) theory, where the peak value of
ZT
along the
xx
lattice direction of n-type (p-type) under 700 K is close to 2.18 (0.64), which is much above that of Si24(0.69, 0.51) and d-Si(0.07). The finding illustrates the excellent thermoelectric property of
tP
36-Si and demonstrate that this new silicon allotrope is an appropriate and promising potential thermoelectric materials.
Graphic abstract</description><subject>Allotropy</subject><subject>Analysis</subject><subject>Anisotropy</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Diamonds</subject><subject>Electric properties</subject><subject>Electron transport</subject><subject>Electronics industry</subject><subject>Figure of merit</subject><subject>First principles</subject><subject>Fluid- and Aerodynamics</subject><subject>Group velocity</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Performance evaluation</subject><subject>Phonons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power factor</subject><subject>Regular Article - Computational Methods</subject><subject>Relaxation time</subject><subject>Silicon</subject><subject>Solid State Physics</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Transport theory</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhCMEEqXwG7DEiUOoX3HcY1XxqFQJRHvGctx1SJXGwXYl-u9xCYIjh9XOYWY1-2XZNcF3hHA8gX5bTQLBuCA5pmkwTYqdZCPCGc8FZuL0V1N5nl2EsMUYE0H4KHtbv4PfOWjBRN8Y1IO3zu90ZwA5iyJEr2vX6RaFpm2M65BuWxe96wHFFybyVYOsdztkGx9i3vumM03fQkAh7jeHy-zM6jbA1c8eZ-uH-_X8KV8-Py7ms2VumJAx3wCQgnMuiDZclpuCVFJaWWiOKdOW6krIqbWal8CMJnbKgRtWYlNxOa0wG2c3w9neu489hKi2bu9T66CoILQUnLIyuW4HV61bUKmo6yJ8xlrvQ1CL1auaCVmWvBCUJ285eI13IXiwKr220_6gCFZH7urIXQ3cVeKuvrkrlpJySIYjjBr8X5f_ol-fH4oI</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Liu, Zeyu</creator><creator>Tan, Na</creator><creator>Tang, Chao</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20211201</creationdate><title>Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study</title><author>Liu, Zeyu ; Tan, Na ; Tang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-dee1544461ac487d51b88f85a4023af2ab689ffa47e3ca1f94e4c370cb489b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Allotropy</topic><topic>Analysis</topic><topic>Anisotropy</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Diamonds</topic><topic>Electric properties</topic><topic>Electron transport</topic><topic>Electronics industry</topic><topic>Figure of merit</topic><topic>First principles</topic><topic>Fluid- and Aerodynamics</topic><topic>Group velocity</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Performance evaluation</topic><topic>Phonons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power factor</topic><topic>Regular Article - Computational Methods</topic><topic>Relaxation time</topic><topic>Silicon</topic><topic>Solid State Physics</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Transport theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zeyu</creatorcontrib><creatorcontrib>Tan, Na</creatorcontrib><creatorcontrib>Tang, Chao</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zeyu</au><au>Tan, Na</au><au>Tang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>94</volume><issue>12</issue><artnum>247</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>Diamond-like cubic silicon (
d
-Si) has become a mainstay material for new energy and modern electronics industries. Nevertheless, such material hosts a high lattice thermal conductivity, resulting in a small thermoelectric figure of merit (
ZT
), which greatly limits its applications in thermoelectric conversion field.
tP
36-Si is a newly predicted allotrope of silicon with direct band gap, and its total energy is close to
d
-Si, which indicates that it is likely to be experimentally prepared in years to come. In this article, the thermoelectric properties of this novel new silicon allotrope are researched by combining semi-classical Boltzmann transport theory with first-principles calculation. Electron transport of this new silicon allotrope possesses obvious anisotropy, while the anisotropy of phonon thermal conductivity is slight. Compared to
d
-Si and other silicon allotropes (Si
24
, oP32-Si), lower lattice thermal conductivity (23.68 W/mK) and higher power factor (72.63 W/mK
2
)
are revealed in
tP
36-Si. Further analysis shows that the lower phonon thermal conductivity principally comes from the inhibition of group velocity and relaxation time of phonon. The thermoelectric performance of
tP
36-Si is evaluated according to the electronic relaxation time obtained from the deformation potential (DP) theory, where the peak value of
ZT
along the
xx
lattice direction of n-type (p-type) under 700 K is close to 2.18 (0.64), which is much above that of Si24(0.69, 0.51) and d-Si(0.07). The finding illustrates the excellent thermoelectric property of
tP
36-Si and demonstrate that this new silicon allotrope is an appropriate and promising potential thermoelectric materials.
Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/s10051-021-00251-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6028 |
ispartof | The European physical journal. B, Condensed matter physics, 2021-12, Vol.94 (12), Article 247 |
issn | 1434-6028 1434-6036 |
language | eng |
recordid | cdi_proquest_journals_2612764237 |
source | SpringerLink Journals |
subjects | Allotropy Analysis Anisotropy Complex Systems Condensed Matter Physics Diamonds Electric properties Electron transport Electronics industry Figure of merit First principles Fluid- and Aerodynamics Group velocity Heat conductivity Heat transfer Performance evaluation Phonons Physics Physics and Astronomy Power factor Regular Article - Computational Methods Relaxation time Silicon Solid State Physics Thermal conductivity Thermoelectric materials Thermoelectricity Transport theory |
title | Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20performance%20of%20tetragonal%20silicon%20allotrope%20tP36-Si%20from%20first-principles%20study&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Liu,%20Zeyu&rft.date=2021-12-01&rft.volume=94&rft.issue=12&rft.artnum=247&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/s10051-021-00251-3&rft_dat=%3Cgale_proqu%3EA687745624%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612764237&rft_id=info:pmid/&rft_galeid=A687745624&rfr_iscdi=true |