Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study

Diamond-like cubic silicon ( d -Si) has become a mainstay material for new energy and modern electronics industries. Nevertheless, such material hosts a high lattice thermal conductivity, resulting in a small thermoelectric figure of merit ( ZT ), which greatly limits its applications in thermoelect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2021-12, Vol.94 (12), Article 247
Hauptverfasser: Liu, Zeyu, Tan, Na, Tang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title The European physical journal. B, Condensed matter physics
container_volume 94
creator Liu, Zeyu
Tan, Na
Tang, Chao
description Diamond-like cubic silicon ( d -Si) has become a mainstay material for new energy and modern electronics industries. Nevertheless, such material hosts a high lattice thermal conductivity, resulting in a small thermoelectric figure of merit ( ZT ), which greatly limits its applications in thermoelectric conversion field. tP 36-Si is a newly predicted allotrope of silicon with direct band gap, and its total energy is close to d -Si, which indicates that it is likely to be experimentally prepared in years to come. In this article, the thermoelectric properties of this novel new silicon allotrope are researched by combining semi-classical Boltzmann transport theory with first-principles calculation. Electron transport of this new silicon allotrope possesses obvious anisotropy, while the anisotropy of phonon thermal conductivity is slight. Compared to d -Si and other silicon allotropes (Si 24 , oP32-Si), lower lattice thermal conductivity (23.68 W/mK) and higher power factor (72.63 W/mK 2 ) are revealed in tP 36-Si. Further analysis shows that the lower phonon thermal conductivity principally comes from the inhibition of group velocity and relaxation time of phonon. The thermoelectric performance of tP 36-Si is evaluated according to the electronic relaxation time obtained from the deformation potential (DP) theory, where the peak value of ZT along the xx lattice direction of n-type (p-type) under 700 K is close to 2.18 (0.64), which is much above that of Si24(0.69, 0.51) and d-Si(0.07). The finding illustrates the excellent thermoelectric property of tP 36-Si and demonstrate that this new silicon allotrope is an appropriate and promising potential thermoelectric materials. Graphic abstract
doi_str_mv 10.1140/epjb/s10051-021-00251-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2612764237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A687745624</galeid><sourcerecordid>A687745624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-dee1544461ac487d51b88f85a4023af2ab689ffa47e3ca1f94e4c370cb489b03</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhCMEEqXwG7DEiUOoX3HcY1XxqFQJRHvGctx1SJXGwXYl-u9xCYIjh9XOYWY1-2XZNcF3hHA8gX5bTQLBuCA5pmkwTYqdZCPCGc8FZuL0V1N5nl2EsMUYE0H4KHtbv4PfOWjBRN8Y1IO3zu90ZwA5iyJEr2vX6RaFpm2M65BuWxe96wHFFybyVYOsdztkGx9i3vumM03fQkAh7jeHy-zM6jbA1c8eZ-uH-_X8KV8-Py7ms2VumJAx3wCQgnMuiDZclpuCVFJaWWiOKdOW6krIqbWal8CMJnbKgRtWYlNxOa0wG2c3w9neu489hKi2bu9T66CoILQUnLIyuW4HV61bUKmo6yJ8xlrvQ1CL1auaCVmWvBCUJ285eI13IXiwKr220_6gCFZH7urIXQ3cVeKuvrkrlpJySIYjjBr8X5f_ol-fH4oI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612764237</pqid></control><display><type>article</type><title>Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study</title><source>SpringerLink Journals</source><creator>Liu, Zeyu ; Tan, Na ; Tang, Chao</creator><creatorcontrib>Liu, Zeyu ; Tan, Na ; Tang, Chao</creatorcontrib><description>Diamond-like cubic silicon ( d -Si) has become a mainstay material for new energy and modern electronics industries. Nevertheless, such material hosts a high lattice thermal conductivity, resulting in a small thermoelectric figure of merit ( ZT ), which greatly limits its applications in thermoelectric conversion field. tP 36-Si is a newly predicted allotrope of silicon with direct band gap, and its total energy is close to d -Si, which indicates that it is likely to be experimentally prepared in years to come. In this article, the thermoelectric properties of this novel new silicon allotrope are researched by combining semi-classical Boltzmann transport theory with first-principles calculation. Electron transport of this new silicon allotrope possesses obvious anisotropy, while the anisotropy of phonon thermal conductivity is slight. Compared to d -Si and other silicon allotropes (Si 24 , oP32-Si), lower lattice thermal conductivity (23.68 W/mK) and higher power factor (72.63 W/mK 2 ) are revealed in tP 36-Si. Further analysis shows that the lower phonon thermal conductivity principally comes from the inhibition of group velocity and relaxation time of phonon. The thermoelectric performance of tP 36-Si is evaluated according to the electronic relaxation time obtained from the deformation potential (DP) theory, where the peak value of ZT along the xx lattice direction of n-type (p-type) under 700 K is close to 2.18 (0.64), which is much above that of Si24(0.69, 0.51) and d-Si(0.07). The finding illustrates the excellent thermoelectric property of tP 36-Si and demonstrate that this new silicon allotrope is an appropriate and promising potential thermoelectric materials. Graphic abstract</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/s10051-021-00251-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Allotropy ; Analysis ; Anisotropy ; Complex Systems ; Condensed Matter Physics ; Diamonds ; Electric properties ; Electron transport ; Electronics industry ; Figure of merit ; First principles ; Fluid- and Aerodynamics ; Group velocity ; Heat conductivity ; Heat transfer ; Performance evaluation ; Phonons ; Physics ; Physics and Astronomy ; Power factor ; Regular Article - Computational Methods ; Relaxation time ; Silicon ; Solid State Physics ; Thermal conductivity ; Thermoelectric materials ; Thermoelectricity ; Transport theory</subject><ispartof>The European physical journal. B, Condensed matter physics, 2021-12, Vol.94 (12), Article 247</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-dee1544461ac487d51b88f85a4023af2ab689ffa47e3ca1f94e4c370cb489b03</citedby><cites>FETCH-LOGICAL-c368t-dee1544461ac487d51b88f85a4023af2ab689ffa47e3ca1f94e4c370cb489b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/s10051-021-00251-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/s10051-021-00251-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Zeyu</creatorcontrib><creatorcontrib>Tan, Na</creatorcontrib><creatorcontrib>Tang, Chao</creatorcontrib><title>Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>Diamond-like cubic silicon ( d -Si) has become a mainstay material for new energy and modern electronics industries. Nevertheless, such material hosts a high lattice thermal conductivity, resulting in a small thermoelectric figure of merit ( ZT ), which greatly limits its applications in thermoelectric conversion field. tP 36-Si is a newly predicted allotrope of silicon with direct band gap, and its total energy is close to d -Si, which indicates that it is likely to be experimentally prepared in years to come. In this article, the thermoelectric properties of this novel new silicon allotrope are researched by combining semi-classical Boltzmann transport theory with first-principles calculation. Electron transport of this new silicon allotrope possesses obvious anisotropy, while the anisotropy of phonon thermal conductivity is slight. Compared to d -Si and other silicon allotropes (Si 24 , oP32-Si), lower lattice thermal conductivity (23.68 W/mK) and higher power factor (72.63 W/mK 2 ) are revealed in tP 36-Si. Further analysis shows that the lower phonon thermal conductivity principally comes from the inhibition of group velocity and relaxation time of phonon. The thermoelectric performance of tP 36-Si is evaluated according to the electronic relaxation time obtained from the deformation potential (DP) theory, where the peak value of ZT along the xx lattice direction of n-type (p-type) under 700 K is close to 2.18 (0.64), which is much above that of Si24(0.69, 0.51) and d-Si(0.07). The finding illustrates the excellent thermoelectric property of tP 36-Si and demonstrate that this new silicon allotrope is an appropriate and promising potential thermoelectric materials. Graphic abstract</description><subject>Allotropy</subject><subject>Analysis</subject><subject>Anisotropy</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Diamonds</subject><subject>Electric properties</subject><subject>Electron transport</subject><subject>Electronics industry</subject><subject>Figure of merit</subject><subject>First principles</subject><subject>Fluid- and Aerodynamics</subject><subject>Group velocity</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Performance evaluation</subject><subject>Phonons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power factor</subject><subject>Regular Article - Computational Methods</subject><subject>Relaxation time</subject><subject>Silicon</subject><subject>Solid State Physics</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Transport theory</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhCMEEqXwG7DEiUOoX3HcY1XxqFQJRHvGctx1SJXGwXYl-u9xCYIjh9XOYWY1-2XZNcF3hHA8gX5bTQLBuCA5pmkwTYqdZCPCGc8FZuL0V1N5nl2EsMUYE0H4KHtbv4PfOWjBRN8Y1IO3zu90ZwA5iyJEr2vX6RaFpm2M65BuWxe96wHFFybyVYOsdztkGx9i3vumM03fQkAh7jeHy-zM6jbA1c8eZ-uH-_X8KV8-Py7ms2VumJAx3wCQgnMuiDZclpuCVFJaWWiOKdOW6krIqbWal8CMJnbKgRtWYlNxOa0wG2c3w9neu489hKi2bu9T66CoILQUnLIyuW4HV61bUKmo6yJ8xlrvQ1CL1auaCVmWvBCUJ285eI13IXiwKr220_6gCFZH7urIXQ3cVeKuvrkrlpJySIYjjBr8X5f_ol-fH4oI</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Liu, Zeyu</creator><creator>Tan, Na</creator><creator>Tang, Chao</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20211201</creationdate><title>Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study</title><author>Liu, Zeyu ; Tan, Na ; Tang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-dee1544461ac487d51b88f85a4023af2ab689ffa47e3ca1f94e4c370cb489b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Allotropy</topic><topic>Analysis</topic><topic>Anisotropy</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Diamonds</topic><topic>Electric properties</topic><topic>Electron transport</topic><topic>Electronics industry</topic><topic>Figure of merit</topic><topic>First principles</topic><topic>Fluid- and Aerodynamics</topic><topic>Group velocity</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Performance evaluation</topic><topic>Phonons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power factor</topic><topic>Regular Article - Computational Methods</topic><topic>Relaxation time</topic><topic>Silicon</topic><topic>Solid State Physics</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Transport theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zeyu</creatorcontrib><creatorcontrib>Tan, Na</creatorcontrib><creatorcontrib>Tang, Chao</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zeyu</au><au>Tan, Na</au><au>Tang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>94</volume><issue>12</issue><artnum>247</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>Diamond-like cubic silicon ( d -Si) has become a mainstay material for new energy and modern electronics industries. Nevertheless, such material hosts a high lattice thermal conductivity, resulting in a small thermoelectric figure of merit ( ZT ), which greatly limits its applications in thermoelectric conversion field. tP 36-Si is a newly predicted allotrope of silicon with direct band gap, and its total energy is close to d -Si, which indicates that it is likely to be experimentally prepared in years to come. In this article, the thermoelectric properties of this novel new silicon allotrope are researched by combining semi-classical Boltzmann transport theory with first-principles calculation. Electron transport of this new silicon allotrope possesses obvious anisotropy, while the anisotropy of phonon thermal conductivity is slight. Compared to d -Si and other silicon allotropes (Si 24 , oP32-Si), lower lattice thermal conductivity (23.68 W/mK) and higher power factor (72.63 W/mK 2 ) are revealed in tP 36-Si. Further analysis shows that the lower phonon thermal conductivity principally comes from the inhibition of group velocity and relaxation time of phonon. The thermoelectric performance of tP 36-Si is evaluated according to the electronic relaxation time obtained from the deformation potential (DP) theory, where the peak value of ZT along the xx lattice direction of n-type (p-type) under 700 K is close to 2.18 (0.64), which is much above that of Si24(0.69, 0.51) and d-Si(0.07). The finding illustrates the excellent thermoelectric property of tP 36-Si and demonstrate that this new silicon allotrope is an appropriate and promising potential thermoelectric materials. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/s10051-021-00251-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2021-12, Vol.94 (12), Article 247
issn 1434-6028
1434-6036
language eng
recordid cdi_proquest_journals_2612764237
source SpringerLink Journals
subjects Allotropy
Analysis
Anisotropy
Complex Systems
Condensed Matter Physics
Diamonds
Electric properties
Electron transport
Electronics industry
Figure of merit
First principles
Fluid- and Aerodynamics
Group velocity
Heat conductivity
Heat transfer
Performance evaluation
Phonons
Physics
Physics and Astronomy
Power factor
Regular Article - Computational Methods
Relaxation time
Silicon
Solid State Physics
Thermal conductivity
Thermoelectric materials
Thermoelectricity
Transport theory
title Thermoelectric performance of tetragonal silicon allotrope tP36-Si from first-principles study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20performance%20of%20tetragonal%20silicon%20allotrope%20tP36-Si%20from%20first-principles%20study&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Liu,%20Zeyu&rft.date=2021-12-01&rft.volume=94&rft.issue=12&rft.artnum=247&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/s10051-021-00251-3&rft_dat=%3Cgale_proqu%3EA687745624%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612764237&rft_id=info:pmid/&rft_galeid=A687745624&rfr_iscdi=true