Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials
This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential bridge-type...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-12, Vol.10 (24), p.3057 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 3057 |
container_title | Electronics (Basel) |
container_volume | 10 |
creator | Ali, Luqman Wang, Cong Ullah, Inam Yousaf, Adnan Khan, Wali Ullah Ullah, Shafi Khan, Rahim Alassery, Fawaz Hamam, Habib Shafiq, Muhammad |
description | This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential bridge-type inductor fabricated on an RF-35 substrate (εr = 3.5 and tanδ = 0.0018). The bridge-type differential inductor is introduced to obtain a maximum inductance value with high quality (Q) factor and low tunable resonant frequency. The central IDC structure is configured as a spur-line structure to create a high-intensity coupled electric field (e-field) zone, which significantly interacts with the materials under test (MUTs), resulting in an increased sensitivity. The proposed sensor prototype with optimized parameters generates a resonant frequency at 1.38 GHz for measuring the complex permittivity and material thickness. The experimental results indicated that the resonant frequency of the designed sensor revealed high sensitivities of 41 MHz/mm for thickness with a linear response (r2 = 0.91567), and 53 MHz/Δεr for permittivity with a linear response (r2 = 0.98903). The maximum error ratio for measuring MUTs with a high gap of 0.3 mm between the testing sample and resonator is 6.52%. The presented performance of the proposed sensor authenticates its application in the non-contact measurement of samples based on complex permittivity and thickness. |
doi_str_mv | 10.3390/electronics10243057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2612764086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612764086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-70639534de44c72d455197b2bef596e5ab9f09f944b7806ce32ad60bb1f26cc23</originalsourceid><addsrcrecordid>eNptUE1LAzEQDaJgqf0FXgKeV_O1SXOU1i9oraCel2x2YlPapCapor_eLfXgwYHhvcObeTMPoXNKLjnX5ArWYEuKwdtMCROc1OoIDRhRutJMs-M__BSNcl6RvjTlY04GaDmF7N8CNqHDi23xG_9tio8BR4fn3qb4aT4AP0PIMWHXd1kCfoyhmsRQjC14DibvEmwglP3MU8_x1B9u8hbPTYHkzTqfoRPXA4x-cYheb29eJvfVbHH3MLmeVZYzVipFJNc1Fx0IYRXrRF1TrVrWgqu1hNq02hHttBCtGhNpgTPTSdK21DFpLeNDdHHYu03xfQe5NKu4S6G3bJikTElBxrJX8YOq_zDnBK7ZJr8x6auhpNmn2vyTKv8BTK1uXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612764086</pqid></control><display><type>article</type><title>Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ali, Luqman ; Wang, Cong ; Ullah, Inam ; Yousaf, Adnan ; Khan, Wali Ullah ; Ullah, Shafi ; Khan, Rahim ; Alassery, Fawaz ; Hamam, Habib ; Shafiq, Muhammad</creator><creatorcontrib>Ali, Luqman ; Wang, Cong ; Ullah, Inam ; Yousaf, Adnan ; Khan, Wali Ullah ; Ullah, Shafi ; Khan, Rahim ; Alassery, Fawaz ; Hamam, Habib ; Shafiq, Muhammad</creatorcontrib><description>This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential bridge-type inductor fabricated on an RF-35 substrate (εr = 3.5 and tanδ = 0.0018). The bridge-type differential inductor is introduced to obtain a maximum inductance value with high quality (Q) factor and low tunable resonant frequency. The central IDC structure is configured as a spur-line structure to create a high-intensity coupled electric field (e-field) zone, which significantly interacts with the materials under test (MUTs), resulting in an increased sensitivity. The proposed sensor prototype with optimized parameters generates a resonant frequency at 1.38 GHz for measuring the complex permittivity and material thickness. The experimental results indicated that the resonant frequency of the designed sensor revealed high sensitivities of 41 MHz/mm for thickness with a linear response (r2 = 0.91567), and 53 MHz/Δεr for permittivity with a linear response (r2 = 0.98903). The maximum error ratio for measuring MUTs with a high gap of 0.3 mm between the testing sample and resonator is 6.52%. The presented performance of the proposed sensor authenticates its application in the non-contact measurement of samples based on complex permittivity and thickness.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10243057</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Complex permittivity ; Design ; Design optimization ; Dielectric properties ; Dielectrics ; Electric contacts ; Electric fields ; Electrodes ; Error analysis ; Inductance ; Measurement techniques ; Microwave sensors ; Parameter sensitivity ; Permittivity ; Resonant frequencies ; Sensitivity ; Sensors ; Substrates ; Thickness</subject><ispartof>Electronics (Basel), 2021-12, Vol.10 (24), p.3057</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-70639534de44c72d455197b2bef596e5ab9f09f944b7806ce32ad60bb1f26cc23</citedby><cites>FETCH-LOGICAL-c322t-70639534de44c72d455197b2bef596e5ab9f09f944b7806ce32ad60bb1f26cc23</cites><orcidid>0000-0002-5879-569X ; 0000-0002-0928-915X ; 0000-0002-2863-0309 ; 0000-0001-7337-7608 ; 0000-0002-5320-1012 ; 0000-0002-8187-2286 ; 0000-0002-1661-9911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ali, Luqman</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Ullah, Inam</creatorcontrib><creatorcontrib>Yousaf, Adnan</creatorcontrib><creatorcontrib>Khan, Wali Ullah</creatorcontrib><creatorcontrib>Ullah, Shafi</creatorcontrib><creatorcontrib>Khan, Rahim</creatorcontrib><creatorcontrib>Alassery, Fawaz</creatorcontrib><creatorcontrib>Hamam, Habib</creatorcontrib><creatorcontrib>Shafiq, Muhammad</creatorcontrib><title>Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials</title><title>Electronics (Basel)</title><description>This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential bridge-type inductor fabricated on an RF-35 substrate (εr = 3.5 and tanδ = 0.0018). The bridge-type differential inductor is introduced to obtain a maximum inductance value with high quality (Q) factor and low tunable resonant frequency. The central IDC structure is configured as a spur-line structure to create a high-intensity coupled electric field (e-field) zone, which significantly interacts with the materials under test (MUTs), resulting in an increased sensitivity. The proposed sensor prototype with optimized parameters generates a resonant frequency at 1.38 GHz for measuring the complex permittivity and material thickness. The experimental results indicated that the resonant frequency of the designed sensor revealed high sensitivities of 41 MHz/mm for thickness with a linear response (r2 = 0.91567), and 53 MHz/Δεr for permittivity with a linear response (r2 = 0.98903). The maximum error ratio for measuring MUTs with a high gap of 0.3 mm between the testing sample and resonator is 6.52%. The presented performance of the proposed sensor authenticates its application in the non-contact measurement of samples based on complex permittivity and thickness.</description><subject>Complex permittivity</subject><subject>Design</subject><subject>Design optimization</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Error analysis</subject><subject>Inductance</subject><subject>Measurement techniques</subject><subject>Microwave sensors</subject><subject>Parameter sensitivity</subject><subject>Permittivity</subject><subject>Resonant frequencies</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Substrates</subject><subject>Thickness</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUE1LAzEQDaJgqf0FXgKeV_O1SXOU1i9oraCel2x2YlPapCapor_eLfXgwYHhvcObeTMPoXNKLjnX5ArWYEuKwdtMCROc1OoIDRhRutJMs-M__BSNcl6RvjTlY04GaDmF7N8CNqHDi23xG_9tio8BR4fn3qb4aT4AP0PIMWHXd1kCfoyhmsRQjC14DibvEmwglP3MU8_x1B9u8hbPTYHkzTqfoRPXA4x-cYheb29eJvfVbHH3MLmeVZYzVipFJNc1Fx0IYRXrRF1TrVrWgqu1hNq02hHttBCtGhNpgTPTSdK21DFpLeNDdHHYu03xfQe5NKu4S6G3bJikTElBxrJX8YOq_zDnBK7ZJr8x6auhpNmn2vyTKv8BTK1uXg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ali, Luqman</creator><creator>Wang, Cong</creator><creator>Ullah, Inam</creator><creator>Yousaf, Adnan</creator><creator>Khan, Wali Ullah</creator><creator>Ullah, Shafi</creator><creator>Khan, Rahim</creator><creator>Alassery, Fawaz</creator><creator>Hamam, Habib</creator><creator>Shafiq, Muhammad</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5879-569X</orcidid><orcidid>https://orcid.org/0000-0002-0928-915X</orcidid><orcidid>https://orcid.org/0000-0002-2863-0309</orcidid><orcidid>https://orcid.org/0000-0001-7337-7608</orcidid><orcidid>https://orcid.org/0000-0002-5320-1012</orcidid><orcidid>https://orcid.org/0000-0002-8187-2286</orcidid><orcidid>https://orcid.org/0000-0002-1661-9911</orcidid></search><sort><creationdate>20211201</creationdate><title>Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials</title><author>Ali, Luqman ; Wang, Cong ; Ullah, Inam ; Yousaf, Adnan ; Khan, Wali Ullah ; Ullah, Shafi ; Khan, Rahim ; Alassery, Fawaz ; Hamam, Habib ; Shafiq, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-70639534de44c72d455197b2bef596e5ab9f09f944b7806ce32ad60bb1f26cc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Complex permittivity</topic><topic>Design</topic><topic>Design optimization</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Error analysis</topic><topic>Inductance</topic><topic>Measurement techniques</topic><topic>Microwave sensors</topic><topic>Parameter sensitivity</topic><topic>Permittivity</topic><topic>Resonant frequencies</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Substrates</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Luqman</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Ullah, Inam</creatorcontrib><creatorcontrib>Yousaf, Adnan</creatorcontrib><creatorcontrib>Khan, Wali Ullah</creatorcontrib><creatorcontrib>Ullah, Shafi</creatorcontrib><creatorcontrib>Khan, Rahim</creatorcontrib><creatorcontrib>Alassery, Fawaz</creatorcontrib><creatorcontrib>Hamam, Habib</creatorcontrib><creatorcontrib>Shafiq, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Luqman</au><au>Wang, Cong</au><au>Ullah, Inam</au><au>Yousaf, Adnan</au><au>Khan, Wali Ullah</au><au>Ullah, Shafi</au><au>Khan, Rahim</au><au>Alassery, Fawaz</au><au>Hamam, Habib</au><au>Shafiq, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>10</volume><issue>24</issue><spage>3057</spage><pages>3057-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential bridge-type inductor fabricated on an RF-35 substrate (εr = 3.5 and tanδ = 0.0018). The bridge-type differential inductor is introduced to obtain a maximum inductance value with high quality (Q) factor and low tunable resonant frequency. The central IDC structure is configured as a spur-line structure to create a high-intensity coupled electric field (e-field) zone, which significantly interacts with the materials under test (MUTs), resulting in an increased sensitivity. The proposed sensor prototype with optimized parameters generates a resonant frequency at 1.38 GHz for measuring the complex permittivity and material thickness. The experimental results indicated that the resonant frequency of the designed sensor revealed high sensitivities of 41 MHz/mm for thickness with a linear response (r2 = 0.91567), and 53 MHz/Δεr for permittivity with a linear response (r2 = 0.98903). The maximum error ratio for measuring MUTs with a high gap of 0.3 mm between the testing sample and resonator is 6.52%. The presented performance of the proposed sensor authenticates its application in the non-contact measurement of samples based on complex permittivity and thickness.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10243057</doi><orcidid>https://orcid.org/0000-0002-5879-569X</orcidid><orcidid>https://orcid.org/0000-0002-0928-915X</orcidid><orcidid>https://orcid.org/0000-0002-2863-0309</orcidid><orcidid>https://orcid.org/0000-0001-7337-7608</orcidid><orcidid>https://orcid.org/0000-0002-5320-1012</orcidid><orcidid>https://orcid.org/0000-0002-8187-2286</orcidid><orcidid>https://orcid.org/0000-0002-1661-9911</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2021-12, Vol.10 (24), p.3057 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2612764086 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Complex permittivity Design Design optimization Dielectric properties Dielectrics Electric contacts Electric fields Electrodes Error analysis Inductance Measurement techniques Microwave sensors Parameter sensitivity Permittivity Resonant frequencies Sensitivity Sensors Substrates Thickness |
title | Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Optimization%20of%20Microwave%20Sensor%20for%20the%20Non-Contact%20Measurement%20of%20Pure%20Dielectric%20Materials&rft.jtitle=Electronics%20(Basel)&rft.au=Ali,%20Luqman&rft.date=2021-12-01&rft.volume=10&rft.issue=24&rft.spage=3057&rft.pages=3057-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10243057&rft_dat=%3Cproquest_cross%3E2612764086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612764086&rft_id=info:pmid/&rfr_iscdi=true |