Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials

This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential bridge-type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2021-12, Vol.10 (24), p.3057
Hauptverfasser: Ali, Luqman, Wang, Cong, Ullah, Inam, Yousaf, Adnan, Khan, Wali Ullah, Ullah, Shafi, Khan, Rahim, Alassery, Fawaz, Hamam, Habib, Shafiq, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 3057
container_title Electronics (Basel)
container_volume 10
creator Ali, Luqman
Wang, Cong
Ullah, Inam
Yousaf, Adnan
Khan, Wali Ullah
Ullah, Shafi
Khan, Rahim
Alassery, Fawaz
Hamam, Habib
Shafiq, Muhammad
description This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential bridge-type inductor fabricated on an RF-35 substrate (εr = 3.5 and tanδ = 0.0018). The bridge-type differential inductor is introduced to obtain a maximum inductance value with high quality (Q) factor and low tunable resonant frequency. The central IDC structure is configured as a spur-line structure to create a high-intensity coupled electric field (e-field) zone, which significantly interacts with the materials under test (MUTs), resulting in an increased sensitivity. The proposed sensor prototype with optimized parameters generates a resonant frequency at 1.38 GHz for measuring the complex permittivity and material thickness. The experimental results indicated that the resonant frequency of the designed sensor revealed high sensitivities of 41 MHz/mm for thickness with a linear response (r2 = 0.91567), and 53 MHz/Δεr for permittivity with a linear response (r2 = 0.98903). The maximum error ratio for measuring MUTs with a high gap of 0.3 mm between the testing sample and resonator is 6.52%. The presented performance of the proposed sensor authenticates its application in the non-contact measurement of samples based on complex permittivity and thickness.
doi_str_mv 10.3390/electronics10243057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2612764086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612764086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-70639534de44c72d455197b2bef596e5ab9f09f944b7806ce32ad60bb1f26cc23</originalsourceid><addsrcrecordid>eNptUE1LAzEQDaJgqf0FXgKeV_O1SXOU1i9oraCel2x2YlPapCapor_eLfXgwYHhvcObeTMPoXNKLjnX5ArWYEuKwdtMCROc1OoIDRhRutJMs-M__BSNcl6RvjTlY04GaDmF7N8CNqHDi23xG_9tio8BR4fn3qb4aT4AP0PIMWHXd1kCfoyhmsRQjC14DibvEmwglP3MU8_x1B9u8hbPTYHkzTqfoRPXA4x-cYheb29eJvfVbHH3MLmeVZYzVipFJNc1Fx0IYRXrRF1TrVrWgqu1hNq02hHttBCtGhNpgTPTSdK21DFpLeNDdHHYu03xfQe5NKu4S6G3bJikTElBxrJX8YOq_zDnBK7ZJr8x6auhpNmn2vyTKv8BTK1uXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612764086</pqid></control><display><type>article</type><title>Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ali, Luqman ; Wang, Cong ; Ullah, Inam ; Yousaf, Adnan ; Khan, Wali Ullah ; Ullah, Shafi ; Khan, Rahim ; Alassery, Fawaz ; Hamam, Habib ; Shafiq, Muhammad</creator><creatorcontrib>Ali, Luqman ; Wang, Cong ; Ullah, Inam ; Yousaf, Adnan ; Khan, Wali Ullah ; Ullah, Shafi ; Khan, Rahim ; Alassery, Fawaz ; Hamam, Habib ; Shafiq, Muhammad</creatorcontrib><description>This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential bridge-type inductor fabricated on an RF-35 substrate (εr = 3.5 and tanδ = 0.0018). The bridge-type differential inductor is introduced to obtain a maximum inductance value with high quality (Q) factor and low tunable resonant frequency. The central IDC structure is configured as a spur-line structure to create a high-intensity coupled electric field (e-field) zone, which significantly interacts with the materials under test (MUTs), resulting in an increased sensitivity. The proposed sensor prototype with optimized parameters generates a resonant frequency at 1.38 GHz for measuring the complex permittivity and material thickness. The experimental results indicated that the resonant frequency of the designed sensor revealed high sensitivities of 41 MHz/mm for thickness with a linear response (r2 = 0.91567), and 53 MHz/Δεr for permittivity with a linear response (r2 = 0.98903). The maximum error ratio for measuring MUTs with a high gap of 0.3 mm between the testing sample and resonator is 6.52%. The presented performance of the proposed sensor authenticates its application in the non-contact measurement of samples based on complex permittivity and thickness.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10243057</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Complex permittivity ; Design ; Design optimization ; Dielectric properties ; Dielectrics ; Electric contacts ; Electric fields ; Electrodes ; Error analysis ; Inductance ; Measurement techniques ; Microwave sensors ; Parameter sensitivity ; Permittivity ; Resonant frequencies ; Sensitivity ; Sensors ; Substrates ; Thickness</subject><ispartof>Electronics (Basel), 2021-12, Vol.10 (24), p.3057</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-70639534de44c72d455197b2bef596e5ab9f09f944b7806ce32ad60bb1f26cc23</citedby><cites>FETCH-LOGICAL-c322t-70639534de44c72d455197b2bef596e5ab9f09f944b7806ce32ad60bb1f26cc23</cites><orcidid>0000-0002-5879-569X ; 0000-0002-0928-915X ; 0000-0002-2863-0309 ; 0000-0001-7337-7608 ; 0000-0002-5320-1012 ; 0000-0002-8187-2286 ; 0000-0002-1661-9911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ali, Luqman</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Ullah, Inam</creatorcontrib><creatorcontrib>Yousaf, Adnan</creatorcontrib><creatorcontrib>Khan, Wali Ullah</creatorcontrib><creatorcontrib>Ullah, Shafi</creatorcontrib><creatorcontrib>Khan, Rahim</creatorcontrib><creatorcontrib>Alassery, Fawaz</creatorcontrib><creatorcontrib>Hamam, Habib</creatorcontrib><creatorcontrib>Shafiq, Muhammad</creatorcontrib><title>Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials</title><title>Electronics (Basel)</title><description>This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential bridge-type inductor fabricated on an RF-35 substrate (εr = 3.5 and tanδ = 0.0018). The bridge-type differential inductor is introduced to obtain a maximum inductance value with high quality (Q) factor and low tunable resonant frequency. The central IDC structure is configured as a spur-line structure to create a high-intensity coupled electric field (e-field) zone, which significantly interacts with the materials under test (MUTs), resulting in an increased sensitivity. The proposed sensor prototype with optimized parameters generates a resonant frequency at 1.38 GHz for measuring the complex permittivity and material thickness. The experimental results indicated that the resonant frequency of the designed sensor revealed high sensitivities of 41 MHz/mm for thickness with a linear response (r2 = 0.91567), and 53 MHz/Δεr for permittivity with a linear response (r2 = 0.98903). The maximum error ratio for measuring MUTs with a high gap of 0.3 mm between the testing sample and resonator is 6.52%. The presented performance of the proposed sensor authenticates its application in the non-contact measurement of samples based on complex permittivity and thickness.</description><subject>Complex permittivity</subject><subject>Design</subject><subject>Design optimization</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Error analysis</subject><subject>Inductance</subject><subject>Measurement techniques</subject><subject>Microwave sensors</subject><subject>Parameter sensitivity</subject><subject>Permittivity</subject><subject>Resonant frequencies</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Substrates</subject><subject>Thickness</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUE1LAzEQDaJgqf0FXgKeV_O1SXOU1i9oraCel2x2YlPapCapor_eLfXgwYHhvcObeTMPoXNKLjnX5ArWYEuKwdtMCROc1OoIDRhRutJMs-M__BSNcl6RvjTlY04GaDmF7N8CNqHDi23xG_9tio8BR4fn3qb4aT4AP0PIMWHXd1kCfoyhmsRQjC14DibvEmwglP3MU8_x1B9u8hbPTYHkzTqfoRPXA4x-cYheb29eJvfVbHH3MLmeVZYzVipFJNc1Fx0IYRXrRF1TrVrWgqu1hNq02hHttBCtGhNpgTPTSdK21DFpLeNDdHHYu03xfQe5NKu4S6G3bJikTElBxrJX8YOq_zDnBK7ZJr8x6auhpNmn2vyTKv8BTK1uXg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ali, Luqman</creator><creator>Wang, Cong</creator><creator>Ullah, Inam</creator><creator>Yousaf, Adnan</creator><creator>Khan, Wali Ullah</creator><creator>Ullah, Shafi</creator><creator>Khan, Rahim</creator><creator>Alassery, Fawaz</creator><creator>Hamam, Habib</creator><creator>Shafiq, Muhammad</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5879-569X</orcidid><orcidid>https://orcid.org/0000-0002-0928-915X</orcidid><orcidid>https://orcid.org/0000-0002-2863-0309</orcidid><orcidid>https://orcid.org/0000-0001-7337-7608</orcidid><orcidid>https://orcid.org/0000-0002-5320-1012</orcidid><orcidid>https://orcid.org/0000-0002-8187-2286</orcidid><orcidid>https://orcid.org/0000-0002-1661-9911</orcidid></search><sort><creationdate>20211201</creationdate><title>Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials</title><author>Ali, Luqman ; Wang, Cong ; Ullah, Inam ; Yousaf, Adnan ; Khan, Wali Ullah ; Ullah, Shafi ; Khan, Rahim ; Alassery, Fawaz ; Hamam, Habib ; Shafiq, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-70639534de44c72d455197b2bef596e5ab9f09f944b7806ce32ad60bb1f26cc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Complex permittivity</topic><topic>Design</topic><topic>Design optimization</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Error analysis</topic><topic>Inductance</topic><topic>Measurement techniques</topic><topic>Microwave sensors</topic><topic>Parameter sensitivity</topic><topic>Permittivity</topic><topic>Resonant frequencies</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Substrates</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Luqman</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Ullah, Inam</creatorcontrib><creatorcontrib>Yousaf, Adnan</creatorcontrib><creatorcontrib>Khan, Wali Ullah</creatorcontrib><creatorcontrib>Ullah, Shafi</creatorcontrib><creatorcontrib>Khan, Rahim</creatorcontrib><creatorcontrib>Alassery, Fawaz</creatorcontrib><creatorcontrib>Hamam, Habib</creatorcontrib><creatorcontrib>Shafiq, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Luqman</au><au>Wang, Cong</au><au>Ullah, Inam</au><au>Yousaf, Adnan</au><au>Khan, Wali Ullah</au><au>Ullah, Shafi</au><au>Khan, Rahim</au><au>Alassery, Fawaz</au><au>Hamam, Habib</au><au>Shafiq, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>10</volume><issue>24</issue><spage>3057</spage><pages>3057-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential bridge-type inductor fabricated on an RF-35 substrate (εr = 3.5 and tanδ = 0.0018). The bridge-type differential inductor is introduced to obtain a maximum inductance value with high quality (Q) factor and low tunable resonant frequency. The central IDC structure is configured as a spur-line structure to create a high-intensity coupled electric field (e-field) zone, which significantly interacts with the materials under test (MUTs), resulting in an increased sensitivity. The proposed sensor prototype with optimized parameters generates a resonant frequency at 1.38 GHz for measuring the complex permittivity and material thickness. The experimental results indicated that the resonant frequency of the designed sensor revealed high sensitivities of 41 MHz/mm for thickness with a linear response (r2 = 0.91567), and 53 MHz/Δεr for permittivity with a linear response (r2 = 0.98903). The maximum error ratio for measuring MUTs with a high gap of 0.3 mm between the testing sample and resonator is 6.52%. The presented performance of the proposed sensor authenticates its application in the non-contact measurement of samples based on complex permittivity and thickness.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10243057</doi><orcidid>https://orcid.org/0000-0002-5879-569X</orcidid><orcidid>https://orcid.org/0000-0002-0928-915X</orcidid><orcidid>https://orcid.org/0000-0002-2863-0309</orcidid><orcidid>https://orcid.org/0000-0001-7337-7608</orcidid><orcidid>https://orcid.org/0000-0002-5320-1012</orcidid><orcidid>https://orcid.org/0000-0002-8187-2286</orcidid><orcidid>https://orcid.org/0000-0002-1661-9911</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2021-12, Vol.10 (24), p.3057
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2612764086
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Complex permittivity
Design
Design optimization
Dielectric properties
Dielectrics
Electric contacts
Electric fields
Electrodes
Error analysis
Inductance
Measurement techniques
Microwave sensors
Parameter sensitivity
Permittivity
Resonant frequencies
Sensitivity
Sensors
Substrates
Thickness
title Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Optimization%20of%20Microwave%20Sensor%20for%20the%20Non-Contact%20Measurement%20of%20Pure%20Dielectric%20Materials&rft.jtitle=Electronics%20(Basel)&rft.au=Ali,%20Luqman&rft.date=2021-12-01&rft.volume=10&rft.issue=24&rft.spage=3057&rft.pages=3057-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10243057&rft_dat=%3Cproquest_cross%3E2612764086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612764086&rft_id=info:pmid/&rfr_iscdi=true