The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation
The self-supervised monocular depth estimation paradigm has become an important branch of computer vision depth-estimation tasks. However, the depth estimation problem arising from object edge depth pulling or occlusion is still unsolved. The grayscale discontinuity of object edges leads to a relati...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-12, Vol.10 (24), p.3153 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 3153 |
container_title | Electronics (Basel) |
container_volume | 10 |
creator | Wu, Shouying Li, Wei Liang, Binbin Huang, Guoxin |
description | The self-supervised monocular depth estimation paradigm has become an important branch of computer vision depth-estimation tasks. However, the depth estimation problem arising from object edge depth pulling or occlusion is still unsolved. The grayscale discontinuity of object edges leads to a relatively high depth uncertainty of pixels in these regions. We improve the geometric edge prediction results by taking uncertainty into account in the depth-estimation task. To this end, we explore how uncertainty affects this task and propose a new self-supervised monocular depth estimation technique based on multi-scale uncertainty. In addition, we introduce a teacher–student architecture in models and investigate the impact of different teacher networks on the depth and uncertainty results. We evaluate the performance of our paradigm in detail on the standard KITTI dataset. The experimental results show that the accuracy of our method increased from 87.7% to 88.2%, the AbsRel error rate decreased from 0.115 to 0.11, the SqRel error rate decreased from 0.903 to 0.822, and the RMSE error rate decreased from 4.863 to 4.686 compared with the benchmark Monodepth2. Our approach has a positive impact on the problem of texture replication or inaccurate object boundaries, producing sharper and smoother depth images. |
doi_str_mv | 10.3390/electronics10243153 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2612762105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612762105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-c5ffbd0824042ac31d342ba14c885096773d68a74a20ef8d5803c8a69887d9eb3</originalsourceid><addsrcrecordid>eNptkE9LAzEUxIMoWGo_gZeA59Ukb_8kR6nVChUR2vOSTd7aLWtSkyzSb--W9uDBucwcfsx7DCG3nN0DKPaAPZoUvOtM5EzkwAu4IBPBKpUpocTln3xNZjHu2CjFQQKbkI_1Funcu5iC7lyKtMH0g-jown4ifcJ92lLtLN04gyEdkQNtfaBv3nkz9DqcmUVM3ZdOnXc35KrVfcTZ2adk87xYz5fZ6v3ldf64ygwIkTJTtG1jmRQ5y4U2wC3kotE8N1IWTJVVBbaUusq1YNhKW0gGRupSSVlZhQ1Myd2pdx_894Ax1Ts_BDeerEXJRVUKzoqRghNlgo8xYFvvw_hoONSc1cf56n_mg19ZImW6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612762105</pqid></control><display><type>article</type><title>The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Shouying ; Li, Wei ; Liang, Binbin ; Huang, Guoxin</creator><creatorcontrib>Wu, Shouying ; Li, Wei ; Liang, Binbin ; Huang, Guoxin</creatorcontrib><description>The self-supervised monocular depth estimation paradigm has become an important branch of computer vision depth-estimation tasks. However, the depth estimation problem arising from object edge depth pulling or occlusion is still unsolved. The grayscale discontinuity of object edges leads to a relatively high depth uncertainty of pixels in these regions. We improve the geometric edge prediction results by taking uncertainty into account in the depth-estimation task. To this end, we explore how uncertainty affects this task and propose a new self-supervised monocular depth estimation technique based on multi-scale uncertainty. In addition, we introduce a teacher–student architecture in models and investigate the impact of different teacher networks on the depth and uncertainty results. We evaluate the performance of our paradigm in detail on the standard KITTI dataset. The experimental results show that the accuracy of our method increased from 87.7% to 88.2%, the AbsRel error rate decreased from 0.115 to 0.11, the SqRel error rate decreased from 0.903 to 0.822, and the RMSE error rate decreased from 4.863 to 4.686 compared with the benchmark Monodepth2. Our approach has a positive impact on the problem of texture replication or inaccurate object boundaries, producing sharper and smoother depth images.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10243153</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Computer vision ; Deep learning ; Methods ; Neural networks ; Occlusion ; Root-mean-square errors ; Teachers ; Uncertainty</subject><ispartof>Electronics (Basel), 2021-12, Vol.10 (24), p.3153</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-c5ffbd0824042ac31d342ba14c885096773d68a74a20ef8d5803c8a69887d9eb3</citedby><cites>FETCH-LOGICAL-c322t-c5ffbd0824042ac31d342ba14c885096773d68a74a20ef8d5803c8a69887d9eb3</cites><orcidid>0000-0003-4189-1746 ; 0000-0002-2402-1899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wu, Shouying</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liang, Binbin</creatorcontrib><creatorcontrib>Huang, Guoxin</creatorcontrib><title>The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation</title><title>Electronics (Basel)</title><description>The self-supervised monocular depth estimation paradigm has become an important branch of computer vision depth-estimation tasks. However, the depth estimation problem arising from object edge depth pulling or occlusion is still unsolved. The grayscale discontinuity of object edges leads to a relatively high depth uncertainty of pixels in these regions. We improve the geometric edge prediction results by taking uncertainty into account in the depth-estimation task. To this end, we explore how uncertainty affects this task and propose a new self-supervised monocular depth estimation technique based on multi-scale uncertainty. In addition, we introduce a teacher–student architecture in models and investigate the impact of different teacher networks on the depth and uncertainty results. We evaluate the performance of our paradigm in detail on the standard KITTI dataset. The experimental results show that the accuracy of our method increased from 87.7% to 88.2%, the AbsRel error rate decreased from 0.115 to 0.11, the SqRel error rate decreased from 0.903 to 0.822, and the RMSE error rate decreased from 4.863 to 4.686 compared with the benchmark Monodepth2. Our approach has a positive impact on the problem of texture replication or inaccurate object boundaries, producing sharper and smoother depth images.</description><subject>Accuracy</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Occlusion</subject><subject>Root-mean-square errors</subject><subject>Teachers</subject><subject>Uncertainty</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE9LAzEUxIMoWGo_gZeA59Ukb_8kR6nVChUR2vOSTd7aLWtSkyzSb--W9uDBucwcfsx7DCG3nN0DKPaAPZoUvOtM5EzkwAu4IBPBKpUpocTln3xNZjHu2CjFQQKbkI_1Funcu5iC7lyKtMH0g-jown4ifcJ92lLtLN04gyEdkQNtfaBv3nkz9DqcmUVM3ZdOnXc35KrVfcTZ2adk87xYz5fZ6v3ldf64ygwIkTJTtG1jmRQ5y4U2wC3kotE8N1IWTJVVBbaUusq1YNhKW0gGRupSSVlZhQ1Myd2pdx_894Ax1Ts_BDeerEXJRVUKzoqRghNlgo8xYFvvw_hoONSc1cf56n_mg19ZImW6</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wu, Shouying</creator><creator>Li, Wei</creator><creator>Liang, Binbin</creator><creator>Huang, Guoxin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4189-1746</orcidid><orcidid>https://orcid.org/0000-0002-2402-1899</orcidid></search><sort><creationdate>20211201</creationdate><title>The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation</title><author>Wu, Shouying ; Li, Wei ; Liang, Binbin ; Huang, Guoxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-c5ffbd0824042ac31d342ba14c885096773d68a74a20ef8d5803c8a69887d9eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Occlusion</topic><topic>Root-mean-square errors</topic><topic>Teachers</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Shouying</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liang, Binbin</creatorcontrib><creatorcontrib>Huang, Guoxin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Shouying</au><au>Li, Wei</au><au>Liang, Binbin</au><au>Huang, Guoxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>10</volume><issue>24</issue><spage>3153</spage><pages>3153-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The self-supervised monocular depth estimation paradigm has become an important branch of computer vision depth-estimation tasks. However, the depth estimation problem arising from object edge depth pulling or occlusion is still unsolved. The grayscale discontinuity of object edges leads to a relatively high depth uncertainty of pixels in these regions. We improve the geometric edge prediction results by taking uncertainty into account in the depth-estimation task. To this end, we explore how uncertainty affects this task and propose a new self-supervised monocular depth estimation technique based on multi-scale uncertainty. In addition, we introduce a teacher–student architecture in models and investigate the impact of different teacher networks on the depth and uncertainty results. We evaluate the performance of our paradigm in detail on the standard KITTI dataset. The experimental results show that the accuracy of our method increased from 87.7% to 88.2%, the AbsRel error rate decreased from 0.115 to 0.11, the SqRel error rate decreased from 0.903 to 0.822, and the RMSE error rate decreased from 4.863 to 4.686 compared with the benchmark Monodepth2. Our approach has a positive impact on the problem of texture replication or inaccurate object boundaries, producing sharper and smoother depth images.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10243153</doi><orcidid>https://orcid.org/0000-0003-4189-1746</orcidid><orcidid>https://orcid.org/0000-0002-2402-1899</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2021-12, Vol.10 (24), p.3153 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2612762105 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Computer vision Deep learning Methods Neural networks Occlusion Root-mean-square errors Teachers Uncertainty |
title | The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Constraints%20between%20Edge%20Depth%20and%20Uncertainty%20for%20Monocular%20Depth%20Estimation&rft.jtitle=Electronics%20(Basel)&rft.au=Wu,%20Shouying&rft.date=2021-12-01&rft.volume=10&rft.issue=24&rft.spage=3153&rft.pages=3153-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10243153&rft_dat=%3Cproquest_cross%3E2612762105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612762105&rft_id=info:pmid/&rfr_iscdi=true |