The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation

The self-supervised monocular depth estimation paradigm has become an important branch of computer vision depth-estimation tasks. However, the depth estimation problem arising from object edge depth pulling or occlusion is still unsolved. The grayscale discontinuity of object edges leads to a relati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2021-12, Vol.10 (24), p.3153
Hauptverfasser: Wu, Shouying, Li, Wei, Liang, Binbin, Huang, Guoxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 3153
container_title Electronics (Basel)
container_volume 10
creator Wu, Shouying
Li, Wei
Liang, Binbin
Huang, Guoxin
description The self-supervised monocular depth estimation paradigm has become an important branch of computer vision depth-estimation tasks. However, the depth estimation problem arising from object edge depth pulling or occlusion is still unsolved. The grayscale discontinuity of object edges leads to a relatively high depth uncertainty of pixels in these regions. We improve the geometric edge prediction results by taking uncertainty into account in the depth-estimation task. To this end, we explore how uncertainty affects this task and propose a new self-supervised monocular depth estimation technique based on multi-scale uncertainty. In addition, we introduce a teacher–student architecture in models and investigate the impact of different teacher networks on the depth and uncertainty results. We evaluate the performance of our paradigm in detail on the standard KITTI dataset. The experimental results show that the accuracy of our method increased from 87.7% to 88.2%, the AbsRel error rate decreased from 0.115 to 0.11, the SqRel error rate decreased from 0.903 to 0.822, and the RMSE error rate decreased from 4.863 to 4.686 compared with the benchmark Monodepth2. Our approach has a positive impact on the problem of texture replication or inaccurate object boundaries, producing sharper and smoother depth images.
doi_str_mv 10.3390/electronics10243153
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2612762105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612762105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-c5ffbd0824042ac31d342ba14c885096773d68a74a20ef8d5803c8a69887d9eb3</originalsourceid><addsrcrecordid>eNptkE9LAzEUxIMoWGo_gZeA59Ukb_8kR6nVChUR2vOSTd7aLWtSkyzSb--W9uDBucwcfsx7DCG3nN0DKPaAPZoUvOtM5EzkwAu4IBPBKpUpocTln3xNZjHu2CjFQQKbkI_1Funcu5iC7lyKtMH0g-jown4ifcJ92lLtLN04gyEdkQNtfaBv3nkz9DqcmUVM3ZdOnXc35KrVfcTZ2adk87xYz5fZ6v3ldf64ygwIkTJTtG1jmRQ5y4U2wC3kotE8N1IWTJVVBbaUusq1YNhKW0gGRupSSVlZhQ1Myd2pdx_894Ax1Ts_BDeerEXJRVUKzoqRghNlgo8xYFvvw_hoONSc1cf56n_mg19ZImW6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612762105</pqid></control><display><type>article</type><title>The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Shouying ; Li, Wei ; Liang, Binbin ; Huang, Guoxin</creator><creatorcontrib>Wu, Shouying ; Li, Wei ; Liang, Binbin ; Huang, Guoxin</creatorcontrib><description>The self-supervised monocular depth estimation paradigm has become an important branch of computer vision depth-estimation tasks. However, the depth estimation problem arising from object edge depth pulling or occlusion is still unsolved. The grayscale discontinuity of object edges leads to a relatively high depth uncertainty of pixels in these regions. We improve the geometric edge prediction results by taking uncertainty into account in the depth-estimation task. To this end, we explore how uncertainty affects this task and propose a new self-supervised monocular depth estimation technique based on multi-scale uncertainty. In addition, we introduce a teacher–student architecture in models and investigate the impact of different teacher networks on the depth and uncertainty results. We evaluate the performance of our paradigm in detail on the standard KITTI dataset. The experimental results show that the accuracy of our method increased from 87.7% to 88.2%, the AbsRel error rate decreased from 0.115 to 0.11, the SqRel error rate decreased from 0.903 to 0.822, and the RMSE error rate decreased from 4.863 to 4.686 compared with the benchmark Monodepth2. Our approach has a positive impact on the problem of texture replication or inaccurate object boundaries, producing sharper and smoother depth images.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10243153</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Computer vision ; Deep learning ; Methods ; Neural networks ; Occlusion ; Root-mean-square errors ; Teachers ; Uncertainty</subject><ispartof>Electronics (Basel), 2021-12, Vol.10 (24), p.3153</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-c5ffbd0824042ac31d342ba14c885096773d68a74a20ef8d5803c8a69887d9eb3</citedby><cites>FETCH-LOGICAL-c322t-c5ffbd0824042ac31d342ba14c885096773d68a74a20ef8d5803c8a69887d9eb3</cites><orcidid>0000-0003-4189-1746 ; 0000-0002-2402-1899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wu, Shouying</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liang, Binbin</creatorcontrib><creatorcontrib>Huang, Guoxin</creatorcontrib><title>The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation</title><title>Electronics (Basel)</title><description>The self-supervised monocular depth estimation paradigm has become an important branch of computer vision depth-estimation tasks. However, the depth estimation problem arising from object edge depth pulling or occlusion is still unsolved. The grayscale discontinuity of object edges leads to a relatively high depth uncertainty of pixels in these regions. We improve the geometric edge prediction results by taking uncertainty into account in the depth-estimation task. To this end, we explore how uncertainty affects this task and propose a new self-supervised monocular depth estimation technique based on multi-scale uncertainty. In addition, we introduce a teacher–student architecture in models and investigate the impact of different teacher networks on the depth and uncertainty results. We evaluate the performance of our paradigm in detail on the standard KITTI dataset. The experimental results show that the accuracy of our method increased from 87.7% to 88.2%, the AbsRel error rate decreased from 0.115 to 0.11, the SqRel error rate decreased from 0.903 to 0.822, and the RMSE error rate decreased from 4.863 to 4.686 compared with the benchmark Monodepth2. Our approach has a positive impact on the problem of texture replication or inaccurate object boundaries, producing sharper and smoother depth images.</description><subject>Accuracy</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Occlusion</subject><subject>Root-mean-square errors</subject><subject>Teachers</subject><subject>Uncertainty</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE9LAzEUxIMoWGo_gZeA59Ukb_8kR6nVChUR2vOSTd7aLWtSkyzSb--W9uDBucwcfsx7DCG3nN0DKPaAPZoUvOtM5EzkwAu4IBPBKpUpocTln3xNZjHu2CjFQQKbkI_1Funcu5iC7lyKtMH0g-jown4ifcJ92lLtLN04gyEdkQNtfaBv3nkz9DqcmUVM3ZdOnXc35KrVfcTZ2adk87xYz5fZ6v3ldf64ygwIkTJTtG1jmRQ5y4U2wC3kotE8N1IWTJVVBbaUusq1YNhKW0gGRupSSVlZhQ1Myd2pdx_894Ax1Ts_BDeerEXJRVUKzoqRghNlgo8xYFvvw_hoONSc1cf56n_mg19ZImW6</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wu, Shouying</creator><creator>Li, Wei</creator><creator>Liang, Binbin</creator><creator>Huang, Guoxin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4189-1746</orcidid><orcidid>https://orcid.org/0000-0002-2402-1899</orcidid></search><sort><creationdate>20211201</creationdate><title>The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation</title><author>Wu, Shouying ; Li, Wei ; Liang, Binbin ; Huang, Guoxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-c5ffbd0824042ac31d342ba14c885096773d68a74a20ef8d5803c8a69887d9eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Occlusion</topic><topic>Root-mean-square errors</topic><topic>Teachers</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Shouying</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liang, Binbin</creatorcontrib><creatorcontrib>Huang, Guoxin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Shouying</au><au>Li, Wei</au><au>Liang, Binbin</au><au>Huang, Guoxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>10</volume><issue>24</issue><spage>3153</spage><pages>3153-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The self-supervised monocular depth estimation paradigm has become an important branch of computer vision depth-estimation tasks. However, the depth estimation problem arising from object edge depth pulling or occlusion is still unsolved. The grayscale discontinuity of object edges leads to a relatively high depth uncertainty of pixels in these regions. We improve the geometric edge prediction results by taking uncertainty into account in the depth-estimation task. To this end, we explore how uncertainty affects this task and propose a new self-supervised monocular depth estimation technique based on multi-scale uncertainty. In addition, we introduce a teacher–student architecture in models and investigate the impact of different teacher networks on the depth and uncertainty results. We evaluate the performance of our paradigm in detail on the standard KITTI dataset. The experimental results show that the accuracy of our method increased from 87.7% to 88.2%, the AbsRel error rate decreased from 0.115 to 0.11, the SqRel error rate decreased from 0.903 to 0.822, and the RMSE error rate decreased from 4.863 to 4.686 compared with the benchmark Monodepth2. Our approach has a positive impact on the problem of texture replication or inaccurate object boundaries, producing sharper and smoother depth images.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10243153</doi><orcidid>https://orcid.org/0000-0003-4189-1746</orcidid><orcidid>https://orcid.org/0000-0002-2402-1899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2021-12, Vol.10 (24), p.3153
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2612762105
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Computer vision
Deep learning
Methods
Neural networks
Occlusion
Root-mean-square errors
Teachers
Uncertainty
title The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Constraints%20between%20Edge%20Depth%20and%20Uncertainty%20for%20Monocular%20Depth%20Estimation&rft.jtitle=Electronics%20(Basel)&rft.au=Wu,%20Shouying&rft.date=2021-12-01&rft.volume=10&rft.issue=24&rft.spage=3153&rft.pages=3153-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10243153&rft_dat=%3Cproquest_cross%3E2612762105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612762105&rft_id=info:pmid/&rfr_iscdi=true