Disinfection of constructed wetland effluent by in situ electrochemical chlorine production for water reuse
Constructed wetlands (CWs) are globally used for the treatment of wastewater. Due to various causes, often the water is not fully treated in terms of pathogen removal, requiring additional treatment. Here we evaluated the electrochemical disinfection (ED) of CW effluents to guarantee safe wastewater...
Gespeichert in:
Veröffentlicht in: | Environmental science water research & technology 2022-01, Vol.8 (1), p.98-107 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 107 |
---|---|
container_issue | 1 |
container_start_page | 98 |
container_title | Environmental science water research & technology |
container_volume | 8 |
creator | Mosquera-Romero, Suanny Prévoteau, Antonin Arends, Jan B. A. Rousseau, Diederik P. L. Dominguez-Granda, Luis Rabaey, Korneel |
description | Constructed wetlands (CWs) are globally used for the treatment of wastewater. Due to various causes, often the water is not fully treated in terms of pathogen removal, requiring additional treatment. Here we evaluated the electrochemical disinfection (ED) of CW effluents to guarantee safe wastewater reclamation in decentralized settings. We used a two-chamber electrochemical cell to produce chlorine at a Ti/RuO
2
anode with a synthetic electrolyte containing 18.3 mol Cl
−
m
−3
and subsequently tested it with CW effluents from two locations (Ecuador and Belgium). The effluents ran first to the anode for disinfection by chlorine and then to the cathode for recovering a circumneutral pH. Different flow rate, current density, and membrane type combinations were tested with the synthetic electrolyte to optimize chlorine production and later to disinfect CW effluents. The system produced about twice as much free chlorine when an anion exchange membrane was selected rather than a cation exchange membrane because of chloride electromigration to the anolyte. A 5-log removal of fecal indicators was observed without pathogen regrowth within 7 days after treatment when residual chlorine remained, allowing for non-potable water reuse. Lower residence times (15 s) and current densities (50 A m
−2
) induced the most energy-efficient operation with a charge density of 10.4 A h m
−3
and an energy consumption of |
doi_str_mv | 10.1039/D1EW00708D |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2612650865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612650865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-4d28936d2bc92aa538cc7b047b00548d103cb3e17e6f9da598fbe427a88c3f103</originalsourceid><addsrcrecordid>eNpFUE1LAzEQDaJgqb34CwLehOok2Y_sUdr6AQUvisclm53Q1G1Skyyl_95IRQ_DDLw37808Qq4Z3DEQzf2SrT4AapDLMzLhUIo5K1hz_jcDXJJZjFsAYJXIkJiQz6WN1hnUyXpHvaHau5jCqBP29IBpUK6naMwwoku0O1LraLRppDjkneD1BndWq4HqzeCDdUj3wffjSc74QA8qYaABx4hX5MKoIeLst0_J--PqbfE8X78-vSwe1nPNyybNi57LRlQ973TDlSqF1LruoMgFZSH7_KvuBLIaK9P0qmyk6bDgtZJSC5PRKbk56eZTvkaMqd36Mbhs2fKK8aoEWZWZdXti6eBjDGjafbA7FY4tg_Ynz_Y_T_EN1bZpOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612650865</pqid></control><display><type>article</type><title>Disinfection of constructed wetland effluent by in situ electrochemical chlorine production for water reuse</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Mosquera-Romero, Suanny ; Prévoteau, Antonin ; Arends, Jan B. A. ; Rousseau, Diederik P. L. ; Dominguez-Granda, Luis ; Rabaey, Korneel</creator><creatorcontrib>Mosquera-Romero, Suanny ; Prévoteau, Antonin ; Arends, Jan B. A. ; Rousseau, Diederik P. L. ; Dominguez-Granda, Luis ; Rabaey, Korneel</creatorcontrib><description>Constructed wetlands (CWs) are globally used for the treatment of wastewater. Due to various causes, often the water is not fully treated in terms of pathogen removal, requiring additional treatment. Here we evaluated the electrochemical disinfection (ED) of CW effluents to guarantee safe wastewater reclamation in decentralized settings. We used a two-chamber electrochemical cell to produce chlorine at a Ti/RuO
2
anode with a synthetic electrolyte containing 18.3 mol Cl
−
m
−3
and subsequently tested it with CW effluents from two locations (Ecuador and Belgium). The effluents ran first to the anode for disinfection by chlorine and then to the cathode for recovering a circumneutral pH. Different flow rate, current density, and membrane type combinations were tested with the synthetic electrolyte to optimize chlorine production and later to disinfect CW effluents. The system produced about twice as much free chlorine when an anion exchange membrane was selected rather than a cation exchange membrane because of chloride electromigration to the anolyte. A 5-log removal of fecal indicators was observed without pathogen regrowth within 7 days after treatment when residual chlorine remained, allowing for non-potable water reuse. Lower residence times (15 s) and current densities (50 A m
−2
) induced the most energy-efficient operation with a charge density of 10.4 A h m
−3
and an energy consumption of <0.1 kW h m
−3
. These results encourage CW + ED use, especially in low-income countries.</description><identifier>ISSN: 2053-1400</identifier><identifier>EISSN: 2053-1419</identifier><identifier>DOI: 10.1039/D1EW00708D</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anion exchange ; Anion exchanging ; Anions ; Anodes ; Anolytes ; Artificial wetlands ; Cathodes ; Cation exchange ; Cation exchanging ; Cations ; Charge density ; Chlorine ; Current density ; Disinfection ; Drinking water ; Effluents ; Electrochemical cells ; Electrochemistry ; Electrolytes ; Electromigration ; Energy consumption ; Energy efficiency ; Fecal coliforms ; Flow rates ; Flow velocity ; Membranes ; Pathogens ; Reclamation ; Regrowth ; Removal ; Residual chlorine ; Wastewater ; Wastewater renovation ; Wastewater treatment ; Water reclamation ; Water reuse ; Wetlands</subject><ispartof>Environmental science water research & technology, 2022-01, Vol.8 (1), p.98-107</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-4d28936d2bc92aa538cc7b047b00548d103cb3e17e6f9da598fbe427a88c3f103</citedby><cites>FETCH-LOGICAL-c259t-4d28936d2bc92aa538cc7b047b00548d103cb3e17e6f9da598fbe427a88c3f103</cites><orcidid>0000-0002-9492-3601 ; 0000-0002-5339-7537 ; 0000-0001-7035-2587 ; 0000-0001-8738-7778 ; 0000-0001-6527-4828 ; 0000-0001-8430-4412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mosquera-Romero, Suanny</creatorcontrib><creatorcontrib>Prévoteau, Antonin</creatorcontrib><creatorcontrib>Arends, Jan B. A.</creatorcontrib><creatorcontrib>Rousseau, Diederik P. L.</creatorcontrib><creatorcontrib>Dominguez-Granda, Luis</creatorcontrib><creatorcontrib>Rabaey, Korneel</creatorcontrib><title>Disinfection of constructed wetland effluent by in situ electrochemical chlorine production for water reuse</title><title>Environmental science water research & technology</title><description>Constructed wetlands (CWs) are globally used for the treatment of wastewater. Due to various causes, often the water is not fully treated in terms of pathogen removal, requiring additional treatment. Here we evaluated the electrochemical disinfection (ED) of CW effluents to guarantee safe wastewater reclamation in decentralized settings. We used a two-chamber electrochemical cell to produce chlorine at a Ti/RuO
2
anode with a synthetic electrolyte containing 18.3 mol Cl
−
m
−3
and subsequently tested it with CW effluents from two locations (Ecuador and Belgium). The effluents ran first to the anode for disinfection by chlorine and then to the cathode for recovering a circumneutral pH. Different flow rate, current density, and membrane type combinations were tested with the synthetic electrolyte to optimize chlorine production and later to disinfect CW effluents. The system produced about twice as much free chlorine when an anion exchange membrane was selected rather than a cation exchange membrane because of chloride electromigration to the anolyte. A 5-log removal of fecal indicators was observed without pathogen regrowth within 7 days after treatment when residual chlorine remained, allowing for non-potable water reuse. Lower residence times (15 s) and current densities (50 A m
−2
) induced the most energy-efficient operation with a charge density of 10.4 A h m
−3
and an energy consumption of <0.1 kW h m
−3
. These results encourage CW + ED use, especially in low-income countries.</description><subject>Anion exchange</subject><subject>Anion exchanging</subject><subject>Anions</subject><subject>Anodes</subject><subject>Anolytes</subject><subject>Artificial wetlands</subject><subject>Cathodes</subject><subject>Cation exchange</subject><subject>Cation exchanging</subject><subject>Cations</subject><subject>Charge density</subject><subject>Chlorine</subject><subject>Current density</subject><subject>Disinfection</subject><subject>Drinking water</subject><subject>Effluents</subject><subject>Electrochemical cells</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electromigration</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Fecal coliforms</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Membranes</subject><subject>Pathogens</subject><subject>Reclamation</subject><subject>Regrowth</subject><subject>Removal</subject><subject>Residual chlorine</subject><subject>Wastewater</subject><subject>Wastewater renovation</subject><subject>Wastewater treatment</subject><subject>Water reclamation</subject><subject>Water reuse</subject><subject>Wetlands</subject><issn>2053-1400</issn><issn>2053-1419</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFUE1LAzEQDaJgqb34CwLehOok2Y_sUdr6AQUvisclm53Q1G1Skyyl_95IRQ_DDLw37808Qq4Z3DEQzf2SrT4AapDLMzLhUIo5K1hz_jcDXJJZjFsAYJXIkJiQz6WN1hnUyXpHvaHau5jCqBP29IBpUK6naMwwoku0O1LraLRppDjkneD1BndWq4HqzeCDdUj3wffjSc74QA8qYaABx4hX5MKoIeLst0_J--PqbfE8X78-vSwe1nPNyybNi57LRlQ973TDlSqF1LruoMgFZSH7_KvuBLIaK9P0qmyk6bDgtZJSC5PRKbk56eZTvkaMqd36Mbhs2fKK8aoEWZWZdXti6eBjDGjafbA7FY4tg_Ynz_Y_T_EN1bZpOA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Mosquera-Romero, Suanny</creator><creator>Prévoteau, Antonin</creator><creator>Arends, Jan B. A.</creator><creator>Rousseau, Diederik P. L.</creator><creator>Dominguez-Granda, Luis</creator><creator>Rabaey, Korneel</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9492-3601</orcidid><orcidid>https://orcid.org/0000-0002-5339-7537</orcidid><orcidid>https://orcid.org/0000-0001-7035-2587</orcidid><orcidid>https://orcid.org/0000-0001-8738-7778</orcidid><orcidid>https://orcid.org/0000-0001-6527-4828</orcidid><orcidid>https://orcid.org/0000-0001-8430-4412</orcidid></search><sort><creationdate>20220101</creationdate><title>Disinfection of constructed wetland effluent by in situ electrochemical chlorine production for water reuse</title><author>Mosquera-Romero, Suanny ; Prévoteau, Antonin ; Arends, Jan B. A. ; Rousseau, Diederik P. L. ; Dominguez-Granda, Luis ; Rabaey, Korneel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-4d28936d2bc92aa538cc7b047b00548d103cb3e17e6f9da598fbe427a88c3f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anion exchange</topic><topic>Anion exchanging</topic><topic>Anions</topic><topic>Anodes</topic><topic>Anolytes</topic><topic>Artificial wetlands</topic><topic>Cathodes</topic><topic>Cation exchange</topic><topic>Cation exchanging</topic><topic>Cations</topic><topic>Charge density</topic><topic>Chlorine</topic><topic>Current density</topic><topic>Disinfection</topic><topic>Drinking water</topic><topic>Effluents</topic><topic>Electrochemical cells</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electromigration</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Fecal coliforms</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Membranes</topic><topic>Pathogens</topic><topic>Reclamation</topic><topic>Regrowth</topic><topic>Removal</topic><topic>Residual chlorine</topic><topic>Wastewater</topic><topic>Wastewater renovation</topic><topic>Wastewater treatment</topic><topic>Water reclamation</topic><topic>Water reuse</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosquera-Romero, Suanny</creatorcontrib><creatorcontrib>Prévoteau, Antonin</creatorcontrib><creatorcontrib>Arends, Jan B. A.</creatorcontrib><creatorcontrib>Rousseau, Diederik P. L.</creatorcontrib><creatorcontrib>Dominguez-Granda, Luis</creatorcontrib><creatorcontrib>Rabaey, Korneel</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science water research & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosquera-Romero, Suanny</au><au>Prévoteau, Antonin</au><au>Arends, Jan B. A.</au><au>Rousseau, Diederik P. L.</au><au>Dominguez-Granda, Luis</au><au>Rabaey, Korneel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disinfection of constructed wetland effluent by in situ electrochemical chlorine production for water reuse</atitle><jtitle>Environmental science water research & technology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>8</volume><issue>1</issue><spage>98</spage><epage>107</epage><pages>98-107</pages><issn>2053-1400</issn><eissn>2053-1419</eissn><abstract>Constructed wetlands (CWs) are globally used for the treatment of wastewater. Due to various causes, often the water is not fully treated in terms of pathogen removal, requiring additional treatment. Here we evaluated the electrochemical disinfection (ED) of CW effluents to guarantee safe wastewater reclamation in decentralized settings. We used a two-chamber electrochemical cell to produce chlorine at a Ti/RuO
2
anode with a synthetic electrolyte containing 18.3 mol Cl
−
m
−3
and subsequently tested it with CW effluents from two locations (Ecuador and Belgium). The effluents ran first to the anode for disinfection by chlorine and then to the cathode for recovering a circumneutral pH. Different flow rate, current density, and membrane type combinations were tested with the synthetic electrolyte to optimize chlorine production and later to disinfect CW effluents. The system produced about twice as much free chlorine when an anion exchange membrane was selected rather than a cation exchange membrane because of chloride electromigration to the anolyte. A 5-log removal of fecal indicators was observed without pathogen regrowth within 7 days after treatment when residual chlorine remained, allowing for non-potable water reuse. Lower residence times (15 s) and current densities (50 A m
−2
) induced the most energy-efficient operation with a charge density of 10.4 A h m
−3
and an energy consumption of <0.1 kW h m
−3
. These results encourage CW + ED use, especially in low-income countries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D1EW00708D</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9492-3601</orcidid><orcidid>https://orcid.org/0000-0002-5339-7537</orcidid><orcidid>https://orcid.org/0000-0001-7035-2587</orcidid><orcidid>https://orcid.org/0000-0001-8738-7778</orcidid><orcidid>https://orcid.org/0000-0001-6527-4828</orcidid><orcidid>https://orcid.org/0000-0001-8430-4412</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-1400 |
ispartof | Environmental science water research & technology, 2022-01, Vol.8 (1), p.98-107 |
issn | 2053-1400 2053-1419 |
language | eng |
recordid | cdi_proquest_journals_2612650865 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anion exchange Anion exchanging Anions Anodes Anolytes Artificial wetlands Cathodes Cation exchange Cation exchanging Cations Charge density Chlorine Current density Disinfection Drinking water Effluents Electrochemical cells Electrochemistry Electrolytes Electromigration Energy consumption Energy efficiency Fecal coliforms Flow rates Flow velocity Membranes Pathogens Reclamation Regrowth Removal Residual chlorine Wastewater Wastewater renovation Wastewater treatment Water reclamation Water reuse Wetlands |
title | Disinfection of constructed wetland effluent by in situ electrochemical chlorine production for water reuse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disinfection%20of%20constructed%20wetland%20effluent%20by%20in%20situ%20electrochemical%20chlorine%20production%20for%20water%20reuse&rft.jtitle=Environmental%20science%20water%20research%20&%20technology&rft.au=Mosquera-Romero,%20Suanny&rft.date=2022-01-01&rft.volume=8&rft.issue=1&rft.spage=98&rft.epage=107&rft.pages=98-107&rft.issn=2053-1400&rft.eissn=2053-1419&rft_id=info:doi/10.1039/D1EW00708D&rft_dat=%3Cproquest_cross%3E2612650865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612650865&rft_id=info:pmid/&rfr_iscdi=true |