Disinfection of constructed wetland effluent by in situ electrochemical chlorine production for water reuse

Constructed wetlands (CWs) are globally used for the treatment of wastewater. Due to various causes, often the water is not fully treated in terms of pathogen removal, requiring additional treatment. Here we evaluated the electrochemical disinfection (ED) of CW effluents to guarantee safe wastewater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science water research & technology 2022-01, Vol.8 (1), p.98-107
Hauptverfasser: Mosquera-Romero, Suanny, Prévoteau, Antonin, Arends, Jan B. A., Rousseau, Diederik P. L., Dominguez-Granda, Luis, Rabaey, Korneel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107
container_issue 1
container_start_page 98
container_title Environmental science water research & technology
container_volume 8
creator Mosquera-Romero, Suanny
Prévoteau, Antonin
Arends, Jan B. A.
Rousseau, Diederik P. L.
Dominguez-Granda, Luis
Rabaey, Korneel
description Constructed wetlands (CWs) are globally used for the treatment of wastewater. Due to various causes, often the water is not fully treated in terms of pathogen removal, requiring additional treatment. Here we evaluated the electrochemical disinfection (ED) of CW effluents to guarantee safe wastewater reclamation in decentralized settings. We used a two-chamber electrochemical cell to produce chlorine at a Ti/RuO 2 anode with a synthetic electrolyte containing 18.3 mol Cl − m −3 and subsequently tested it with CW effluents from two locations (Ecuador and Belgium). The effluents ran first to the anode for disinfection by chlorine and then to the cathode for recovering a circumneutral pH. Different flow rate, current density, and membrane type combinations were tested with the synthetic electrolyte to optimize chlorine production and later to disinfect CW effluents. The system produced about twice as much free chlorine when an anion exchange membrane was selected rather than a cation exchange membrane because of chloride electromigration to the anolyte. A 5-log removal of fecal indicators was observed without pathogen regrowth within 7 days after treatment when residual chlorine remained, allowing for non-potable water reuse. Lower residence times (15 s) and current densities (50 A m −2 ) induced the most energy-efficient operation with a charge density of 10.4 A h m −3 and an energy consumption of
doi_str_mv 10.1039/D1EW00708D
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2612650865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612650865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-4d28936d2bc92aa538cc7b047b00548d103cb3e17e6f9da598fbe427a88c3f103</originalsourceid><addsrcrecordid>eNpFUE1LAzEQDaJgqb34CwLehOok2Y_sUdr6AQUvisclm53Q1G1Skyyl_95IRQ_DDLw37808Qq4Z3DEQzf2SrT4AapDLMzLhUIo5K1hz_jcDXJJZjFsAYJXIkJiQz6WN1hnUyXpHvaHau5jCqBP29IBpUK6naMwwoku0O1LraLRppDjkneD1BndWq4HqzeCDdUj3wffjSc74QA8qYaABx4hX5MKoIeLst0_J--PqbfE8X78-vSwe1nPNyybNi57LRlQ973TDlSqF1LruoMgFZSH7_KvuBLIaK9P0qmyk6bDgtZJSC5PRKbk56eZTvkaMqd36Mbhs2fKK8aoEWZWZdXti6eBjDGjafbA7FY4tg_Ynz_Y_T_EN1bZpOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612650865</pqid></control><display><type>article</type><title>Disinfection of constructed wetland effluent by in situ electrochemical chlorine production for water reuse</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Mosquera-Romero, Suanny ; Prévoteau, Antonin ; Arends, Jan B. A. ; Rousseau, Diederik P. L. ; Dominguez-Granda, Luis ; Rabaey, Korneel</creator><creatorcontrib>Mosquera-Romero, Suanny ; Prévoteau, Antonin ; Arends, Jan B. A. ; Rousseau, Diederik P. L. ; Dominguez-Granda, Luis ; Rabaey, Korneel</creatorcontrib><description>Constructed wetlands (CWs) are globally used for the treatment of wastewater. Due to various causes, often the water is not fully treated in terms of pathogen removal, requiring additional treatment. Here we evaluated the electrochemical disinfection (ED) of CW effluents to guarantee safe wastewater reclamation in decentralized settings. We used a two-chamber electrochemical cell to produce chlorine at a Ti/RuO 2 anode with a synthetic electrolyte containing 18.3 mol Cl − m −3 and subsequently tested it with CW effluents from two locations (Ecuador and Belgium). The effluents ran first to the anode for disinfection by chlorine and then to the cathode for recovering a circumneutral pH. Different flow rate, current density, and membrane type combinations were tested with the synthetic electrolyte to optimize chlorine production and later to disinfect CW effluents. The system produced about twice as much free chlorine when an anion exchange membrane was selected rather than a cation exchange membrane because of chloride electromigration to the anolyte. A 5-log removal of fecal indicators was observed without pathogen regrowth within 7 days after treatment when residual chlorine remained, allowing for non-potable water reuse. Lower residence times (15 s) and current densities (50 A m −2 ) induced the most energy-efficient operation with a charge density of 10.4 A h m −3 and an energy consumption of &lt;0.1 kW h m −3 . These results encourage CW + ED use, especially in low-income countries.</description><identifier>ISSN: 2053-1400</identifier><identifier>EISSN: 2053-1419</identifier><identifier>DOI: 10.1039/D1EW00708D</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anion exchange ; Anion exchanging ; Anions ; Anodes ; Anolytes ; Artificial wetlands ; Cathodes ; Cation exchange ; Cation exchanging ; Cations ; Charge density ; Chlorine ; Current density ; Disinfection ; Drinking water ; Effluents ; Electrochemical cells ; Electrochemistry ; Electrolytes ; Electromigration ; Energy consumption ; Energy efficiency ; Fecal coliforms ; Flow rates ; Flow velocity ; Membranes ; Pathogens ; Reclamation ; Regrowth ; Removal ; Residual chlorine ; Wastewater ; Wastewater renovation ; Wastewater treatment ; Water reclamation ; Water reuse ; Wetlands</subject><ispartof>Environmental science water research &amp; technology, 2022-01, Vol.8 (1), p.98-107</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-4d28936d2bc92aa538cc7b047b00548d103cb3e17e6f9da598fbe427a88c3f103</citedby><cites>FETCH-LOGICAL-c259t-4d28936d2bc92aa538cc7b047b00548d103cb3e17e6f9da598fbe427a88c3f103</cites><orcidid>0000-0002-9492-3601 ; 0000-0002-5339-7537 ; 0000-0001-7035-2587 ; 0000-0001-8738-7778 ; 0000-0001-6527-4828 ; 0000-0001-8430-4412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mosquera-Romero, Suanny</creatorcontrib><creatorcontrib>Prévoteau, Antonin</creatorcontrib><creatorcontrib>Arends, Jan B. A.</creatorcontrib><creatorcontrib>Rousseau, Diederik P. L.</creatorcontrib><creatorcontrib>Dominguez-Granda, Luis</creatorcontrib><creatorcontrib>Rabaey, Korneel</creatorcontrib><title>Disinfection of constructed wetland effluent by in situ electrochemical chlorine production for water reuse</title><title>Environmental science water research &amp; technology</title><description>Constructed wetlands (CWs) are globally used for the treatment of wastewater. Due to various causes, often the water is not fully treated in terms of pathogen removal, requiring additional treatment. Here we evaluated the electrochemical disinfection (ED) of CW effluents to guarantee safe wastewater reclamation in decentralized settings. We used a two-chamber electrochemical cell to produce chlorine at a Ti/RuO 2 anode with a synthetic electrolyte containing 18.3 mol Cl − m −3 and subsequently tested it with CW effluents from two locations (Ecuador and Belgium). The effluents ran first to the anode for disinfection by chlorine and then to the cathode for recovering a circumneutral pH. Different flow rate, current density, and membrane type combinations were tested with the synthetic electrolyte to optimize chlorine production and later to disinfect CW effluents. The system produced about twice as much free chlorine when an anion exchange membrane was selected rather than a cation exchange membrane because of chloride electromigration to the anolyte. A 5-log removal of fecal indicators was observed without pathogen regrowth within 7 days after treatment when residual chlorine remained, allowing for non-potable water reuse. Lower residence times (15 s) and current densities (50 A m −2 ) induced the most energy-efficient operation with a charge density of 10.4 A h m −3 and an energy consumption of &lt;0.1 kW h m −3 . These results encourage CW + ED use, especially in low-income countries.</description><subject>Anion exchange</subject><subject>Anion exchanging</subject><subject>Anions</subject><subject>Anodes</subject><subject>Anolytes</subject><subject>Artificial wetlands</subject><subject>Cathodes</subject><subject>Cation exchange</subject><subject>Cation exchanging</subject><subject>Cations</subject><subject>Charge density</subject><subject>Chlorine</subject><subject>Current density</subject><subject>Disinfection</subject><subject>Drinking water</subject><subject>Effluents</subject><subject>Electrochemical cells</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electromigration</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Fecal coliforms</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Membranes</subject><subject>Pathogens</subject><subject>Reclamation</subject><subject>Regrowth</subject><subject>Removal</subject><subject>Residual chlorine</subject><subject>Wastewater</subject><subject>Wastewater renovation</subject><subject>Wastewater treatment</subject><subject>Water reclamation</subject><subject>Water reuse</subject><subject>Wetlands</subject><issn>2053-1400</issn><issn>2053-1419</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFUE1LAzEQDaJgqb34CwLehOok2Y_sUdr6AQUvisclm53Q1G1Skyyl_95IRQ_DDLw37808Qq4Z3DEQzf2SrT4AapDLMzLhUIo5K1hz_jcDXJJZjFsAYJXIkJiQz6WN1hnUyXpHvaHau5jCqBP29IBpUK6naMwwoku0O1LraLRppDjkneD1BndWq4HqzeCDdUj3wffjSc74QA8qYaABx4hX5MKoIeLst0_J--PqbfE8X78-vSwe1nPNyybNi57LRlQ973TDlSqF1LruoMgFZSH7_KvuBLIaK9P0qmyk6bDgtZJSC5PRKbk56eZTvkaMqd36Mbhs2fKK8aoEWZWZdXti6eBjDGjafbA7FY4tg_Ynz_Y_T_EN1bZpOA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Mosquera-Romero, Suanny</creator><creator>Prévoteau, Antonin</creator><creator>Arends, Jan B. A.</creator><creator>Rousseau, Diederik P. L.</creator><creator>Dominguez-Granda, Luis</creator><creator>Rabaey, Korneel</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9492-3601</orcidid><orcidid>https://orcid.org/0000-0002-5339-7537</orcidid><orcidid>https://orcid.org/0000-0001-7035-2587</orcidid><orcidid>https://orcid.org/0000-0001-8738-7778</orcidid><orcidid>https://orcid.org/0000-0001-6527-4828</orcidid><orcidid>https://orcid.org/0000-0001-8430-4412</orcidid></search><sort><creationdate>20220101</creationdate><title>Disinfection of constructed wetland effluent by in situ electrochemical chlorine production for water reuse</title><author>Mosquera-Romero, Suanny ; Prévoteau, Antonin ; Arends, Jan B. A. ; Rousseau, Diederik P. L. ; Dominguez-Granda, Luis ; Rabaey, Korneel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-4d28936d2bc92aa538cc7b047b00548d103cb3e17e6f9da598fbe427a88c3f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anion exchange</topic><topic>Anion exchanging</topic><topic>Anions</topic><topic>Anodes</topic><topic>Anolytes</topic><topic>Artificial wetlands</topic><topic>Cathodes</topic><topic>Cation exchange</topic><topic>Cation exchanging</topic><topic>Cations</topic><topic>Charge density</topic><topic>Chlorine</topic><topic>Current density</topic><topic>Disinfection</topic><topic>Drinking water</topic><topic>Effluents</topic><topic>Electrochemical cells</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electromigration</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Fecal coliforms</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Membranes</topic><topic>Pathogens</topic><topic>Reclamation</topic><topic>Regrowth</topic><topic>Removal</topic><topic>Residual chlorine</topic><topic>Wastewater</topic><topic>Wastewater renovation</topic><topic>Wastewater treatment</topic><topic>Water reclamation</topic><topic>Water reuse</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosquera-Romero, Suanny</creatorcontrib><creatorcontrib>Prévoteau, Antonin</creatorcontrib><creatorcontrib>Arends, Jan B. A.</creatorcontrib><creatorcontrib>Rousseau, Diederik P. L.</creatorcontrib><creatorcontrib>Dominguez-Granda, Luis</creatorcontrib><creatorcontrib>Rabaey, Korneel</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science water research &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosquera-Romero, Suanny</au><au>Prévoteau, Antonin</au><au>Arends, Jan B. A.</au><au>Rousseau, Diederik P. L.</au><au>Dominguez-Granda, Luis</au><au>Rabaey, Korneel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disinfection of constructed wetland effluent by in situ electrochemical chlorine production for water reuse</atitle><jtitle>Environmental science water research &amp; technology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>8</volume><issue>1</issue><spage>98</spage><epage>107</epage><pages>98-107</pages><issn>2053-1400</issn><eissn>2053-1419</eissn><abstract>Constructed wetlands (CWs) are globally used for the treatment of wastewater. Due to various causes, often the water is not fully treated in terms of pathogen removal, requiring additional treatment. Here we evaluated the electrochemical disinfection (ED) of CW effluents to guarantee safe wastewater reclamation in decentralized settings. We used a two-chamber electrochemical cell to produce chlorine at a Ti/RuO 2 anode with a synthetic electrolyte containing 18.3 mol Cl − m −3 and subsequently tested it with CW effluents from two locations (Ecuador and Belgium). The effluents ran first to the anode for disinfection by chlorine and then to the cathode for recovering a circumneutral pH. Different flow rate, current density, and membrane type combinations were tested with the synthetic electrolyte to optimize chlorine production and later to disinfect CW effluents. The system produced about twice as much free chlorine when an anion exchange membrane was selected rather than a cation exchange membrane because of chloride electromigration to the anolyte. A 5-log removal of fecal indicators was observed without pathogen regrowth within 7 days after treatment when residual chlorine remained, allowing for non-potable water reuse. Lower residence times (15 s) and current densities (50 A m −2 ) induced the most energy-efficient operation with a charge density of 10.4 A h m −3 and an energy consumption of &lt;0.1 kW h m −3 . These results encourage CW + ED use, especially in low-income countries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D1EW00708D</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9492-3601</orcidid><orcidid>https://orcid.org/0000-0002-5339-7537</orcidid><orcidid>https://orcid.org/0000-0001-7035-2587</orcidid><orcidid>https://orcid.org/0000-0001-8738-7778</orcidid><orcidid>https://orcid.org/0000-0001-6527-4828</orcidid><orcidid>https://orcid.org/0000-0001-8430-4412</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2053-1400
ispartof Environmental science water research & technology, 2022-01, Vol.8 (1), p.98-107
issn 2053-1400
2053-1419
language eng
recordid cdi_proquest_journals_2612650865
source Royal Society Of Chemistry Journals 2008-
subjects Anion exchange
Anion exchanging
Anions
Anodes
Anolytes
Artificial wetlands
Cathodes
Cation exchange
Cation exchanging
Cations
Charge density
Chlorine
Current density
Disinfection
Drinking water
Effluents
Electrochemical cells
Electrochemistry
Electrolytes
Electromigration
Energy consumption
Energy efficiency
Fecal coliforms
Flow rates
Flow velocity
Membranes
Pathogens
Reclamation
Regrowth
Removal
Residual chlorine
Wastewater
Wastewater renovation
Wastewater treatment
Water reclamation
Water reuse
Wetlands
title Disinfection of constructed wetland effluent by in situ electrochemical chlorine production for water reuse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disinfection%20of%20constructed%20wetland%20effluent%20by%20in%20situ%20electrochemical%20chlorine%20production%20for%20water%20reuse&rft.jtitle=Environmental%20science%20water%20research%20&%20technology&rft.au=Mosquera-Romero,%20Suanny&rft.date=2022-01-01&rft.volume=8&rft.issue=1&rft.spage=98&rft.epage=107&rft.pages=98-107&rft.issn=2053-1400&rft.eissn=2053-1419&rft_id=info:doi/10.1039/D1EW00708D&rft_dat=%3Cproquest_cross%3E2612650865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612650865&rft_id=info:pmid/&rfr_iscdi=true