Switching Device-Cognizant Sequential Distribution System Restoration

This paper presents an optimization framework for sequential reconfiguration using an assortment of switching devices and repair process in distribution system restoration. Compared to existing studies, this paper considers types, capabilities and operational limits of different switching devices, m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2022-01, Vol.37 (1), p.317-329
Hauptverfasser: Arif, Anmar, Cui, Bai, Wang, Zhaoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue 1
container_start_page 317
container_title IEEE transactions on power systems
container_volume 37
creator Arif, Anmar
Cui, Bai
Wang, Zhaoyu
description This paper presents an optimization framework for sequential reconfiguration using an assortment of switching devices and repair process in distribution system restoration. Compared to existing studies, this paper considers types, capabilities and operational limits of different switching devices, making it applicable in practice. We develop a novel multi-phase method to find the optimal sequential operation of various switching devices and repair faulted areas. We consider circuit breakers, reclosers, sectionalizers, load breaker switches, and fuses. The switching operation problem is decomposed into two mixed-integer linear programming (MILP) subproblems. The first subproblem determines the optimal network topology and estimates the number of steps to reach that topology, while the second subproblem generates a sequence of switching operations to coordinate the switches. For repairing the faults, we design an MILP model that dispatches repair crews to clear faults and replace melted fuses. After clearing a fault, we update the topology of the network by generating a new sequence of switching operations, and the process continues until all faults are cleared. To improve the computational efficiency, a network reduction algorithm is developed to group line sections, such that only switchable sections are present in the reduced network. The proposed method is validated on the IEEE 123-bus and 8500-bus systems.
doi_str_mv 10.1109/TPWRS.2021.3097538
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2612470085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9488172</ieee_id><sourcerecordid>2612470085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-85d2641db3304d9232089f331d5a55c9786b0ccc410ccf15e8f0ef63b239e8cf3</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSMEEmPwBeBSiXOHkzRtckTb-CNNAq1DHKM2dUemrR1JChqfno5NXGzJfs_P-hFyTWFEKai7xev7PB8xYHTEQWWCyxMyoELIGNJMnZIBSCliqQSckwvvVwCQ9osBmebfNpgP2yyjCX5Zg_G4XTb2p2hClONnh02wxTqaWB-cLbtg2ybKdz7gJpqjD60r9qNLclYXa49Xxz4kbw_Txfgpnr08Po_vZ7FhSoRYioqlCa1KziGpFOMMpKo5p5UohDAqk2kJxpiE9rWmAmUNWKe8ZFyhNDUfktvD3a1r-9980Ku2c00fqVlKWZIBSNGr2EFlXOu9w1pvnd0Ubqcp6D0u_YdL73HpI67edHMwWUT8N6hESpox_gunPWcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612470085</pqid></control><display><type>article</type><title>Switching Device-Cognizant Sequential Distribution System Restoration</title><source>IEEE Xplore</source><creator>Arif, Anmar ; Cui, Bai ; Wang, Zhaoyu</creator><creatorcontrib>Arif, Anmar ; Cui, Bai ; Wang, Zhaoyu</creatorcontrib><description>This paper presents an optimization framework for sequential reconfiguration using an assortment of switching devices and repair process in distribution system restoration. Compared to existing studies, this paper considers types, capabilities and operational limits of different switching devices, making it applicable in practice. We develop a novel multi-phase method to find the optimal sequential operation of various switching devices and repair faulted areas. We consider circuit breakers, reclosers, sectionalizers, load breaker switches, and fuses. The switching operation problem is decomposed into two mixed-integer linear programming (MILP) subproblems. The first subproblem determines the optimal network topology and estimates the number of steps to reach that topology, while the second subproblem generates a sequence of switching operations to coordinate the switches. For repairing the faults, we design an MILP model that dispatches repair crews to clear faults and replace melted fuses. After clearing a fault, we update the topology of the network by generating a new sequence of switching operations, and the process continues until all faults are cleared. To improve the computational efficiency, a network reduction algorithm is developed to group line sections, such that only switchable sections are present in the reduced network. The proposed method is validated on the IEEE 123-bus and 8500-bus systems.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2021.3097538</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Circuit breakers ; Circuit faults ; Distribution system ; fault isolation ; Faults ; Fuses ; Integer programming ; Linear programming ; Maintenance engineering ; Mixed integer ; Network reduction ; Network topologies ; Network topology ; Optimization ; Reconfiguration ; Repair ; Repair &amp; maintenance ; Restoration ; service restoration ; Switches ; Switching ; Switching circuits ; Topology</subject><ispartof>IEEE transactions on power systems, 2022-01, Vol.37 (1), p.317-329</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-85d2641db3304d9232089f331d5a55c9786b0ccc410ccf15e8f0ef63b239e8cf3</citedby><cites>FETCH-LOGICAL-c295t-85d2641db3304d9232089f331d5a55c9786b0ccc410ccf15e8f0ef63b239e8cf3</cites><orcidid>0000-0003-4768-4553 ; 0000-0002-3137-0114 ; 0000-0003-0656-0562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9488172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9488172$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arif, Anmar</creatorcontrib><creatorcontrib>Cui, Bai</creatorcontrib><creatorcontrib>Wang, Zhaoyu</creatorcontrib><title>Switching Device-Cognizant Sequential Distribution System Restoration</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents an optimization framework for sequential reconfiguration using an assortment of switching devices and repair process in distribution system restoration. Compared to existing studies, this paper considers types, capabilities and operational limits of different switching devices, making it applicable in practice. We develop a novel multi-phase method to find the optimal sequential operation of various switching devices and repair faulted areas. We consider circuit breakers, reclosers, sectionalizers, load breaker switches, and fuses. The switching operation problem is decomposed into two mixed-integer linear programming (MILP) subproblems. The first subproblem determines the optimal network topology and estimates the number of steps to reach that topology, while the second subproblem generates a sequence of switching operations to coordinate the switches. For repairing the faults, we design an MILP model that dispatches repair crews to clear faults and replace melted fuses. After clearing a fault, we update the topology of the network by generating a new sequence of switching operations, and the process continues until all faults are cleared. To improve the computational efficiency, a network reduction algorithm is developed to group line sections, such that only switchable sections are present in the reduced network. The proposed method is validated on the IEEE 123-bus and 8500-bus systems.</description><subject>Algorithms</subject><subject>Circuit breakers</subject><subject>Circuit faults</subject><subject>Distribution system</subject><subject>fault isolation</subject><subject>Faults</subject><subject>Fuses</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Maintenance engineering</subject><subject>Mixed integer</subject><subject>Network reduction</subject><subject>Network topologies</subject><subject>Network topology</subject><subject>Optimization</subject><subject>Reconfiguration</subject><subject>Repair</subject><subject>Repair &amp; maintenance</subject><subject>Restoration</subject><subject>service restoration</subject><subject>Switches</subject><subject>Switching</subject><subject>Switching circuits</subject><subject>Topology</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwzAMxSMEEmPwBeBSiXOHkzRtckTb-CNNAq1DHKM2dUemrR1JChqfno5NXGzJfs_P-hFyTWFEKai7xev7PB8xYHTEQWWCyxMyoELIGNJMnZIBSCliqQSckwvvVwCQ9osBmebfNpgP2yyjCX5Zg_G4XTb2p2hClONnh02wxTqaWB-cLbtg2ybKdz7gJpqjD60r9qNLclYXa49Xxz4kbw_Txfgpnr08Po_vZ7FhSoRYioqlCa1KziGpFOMMpKo5p5UohDAqk2kJxpiE9rWmAmUNWKe8ZFyhNDUfktvD3a1r-9980Ku2c00fqVlKWZIBSNGr2EFlXOu9w1pvnd0Ubqcp6D0u_YdL73HpI67edHMwWUT8N6hESpox_gunPWcM</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Arif, Anmar</creator><creator>Cui, Bai</creator><creator>Wang, Zhaoyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4768-4553</orcidid><orcidid>https://orcid.org/0000-0002-3137-0114</orcidid><orcidid>https://orcid.org/0000-0003-0656-0562</orcidid></search><sort><creationdate>202201</creationdate><title>Switching Device-Cognizant Sequential Distribution System Restoration</title><author>Arif, Anmar ; Cui, Bai ; Wang, Zhaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-85d2641db3304d9232089f331d5a55c9786b0ccc410ccf15e8f0ef63b239e8cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Circuit breakers</topic><topic>Circuit faults</topic><topic>Distribution system</topic><topic>fault isolation</topic><topic>Faults</topic><topic>Fuses</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Maintenance engineering</topic><topic>Mixed integer</topic><topic>Network reduction</topic><topic>Network topologies</topic><topic>Network topology</topic><topic>Optimization</topic><topic>Reconfiguration</topic><topic>Repair</topic><topic>Repair &amp; maintenance</topic><topic>Restoration</topic><topic>service restoration</topic><topic>Switches</topic><topic>Switching</topic><topic>Switching circuits</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arif, Anmar</creatorcontrib><creatorcontrib>Cui, Bai</creatorcontrib><creatorcontrib>Wang, Zhaoyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arif, Anmar</au><au>Cui, Bai</au><au>Wang, Zhaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Switching Device-Cognizant Sequential Distribution System Restoration</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2022-01</date><risdate>2022</risdate><volume>37</volume><issue>1</issue><spage>317</spage><epage>329</epage><pages>317-329</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents an optimization framework for sequential reconfiguration using an assortment of switching devices and repair process in distribution system restoration. Compared to existing studies, this paper considers types, capabilities and operational limits of different switching devices, making it applicable in practice. We develop a novel multi-phase method to find the optimal sequential operation of various switching devices and repair faulted areas. We consider circuit breakers, reclosers, sectionalizers, load breaker switches, and fuses. The switching operation problem is decomposed into two mixed-integer linear programming (MILP) subproblems. The first subproblem determines the optimal network topology and estimates the number of steps to reach that topology, while the second subproblem generates a sequence of switching operations to coordinate the switches. For repairing the faults, we design an MILP model that dispatches repair crews to clear faults and replace melted fuses. After clearing a fault, we update the topology of the network by generating a new sequence of switching operations, and the process continues until all faults are cleared. To improve the computational efficiency, a network reduction algorithm is developed to group line sections, such that only switchable sections are present in the reduced network. The proposed method is validated on the IEEE 123-bus and 8500-bus systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2021.3097538</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4768-4553</orcidid><orcidid>https://orcid.org/0000-0002-3137-0114</orcidid><orcidid>https://orcid.org/0000-0003-0656-0562</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2022-01, Vol.37 (1), p.317-329
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_2612470085
source IEEE Xplore
subjects Algorithms
Circuit breakers
Circuit faults
Distribution system
fault isolation
Faults
Fuses
Integer programming
Linear programming
Maintenance engineering
Mixed integer
Network reduction
Network topologies
Network topology
Optimization
Reconfiguration
Repair
Repair & maintenance
Restoration
service restoration
Switches
Switching
Switching circuits
Topology
title Switching Device-Cognizant Sequential Distribution System Restoration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Switching%20Device-Cognizant%20Sequential%20Distribution%20System%20Restoration&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Arif,%20Anmar&rft.date=2022-01&rft.volume=37&rft.issue=1&rft.spage=317&rft.epage=329&rft.pages=317-329&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2021.3097538&rft_dat=%3Cproquest_RIE%3E2612470085%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612470085&rft_id=info:pmid/&rft_ieee_id=9488172&rfr_iscdi=true