An Efficient Batch-Constrained Bayesian Optimization Approach for Analog Circuit Synthesis via Multiobjective Acquisition Ensemble

Bayesian optimization is a promising methodology for analog circuit synthesis. However, the sequential nature of the Bayesian optimization framework significantly limits its ability to fully utilize real-world computational resources. In this article, we propose an efficient parallelizable Bayesian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2022-01, Vol.41 (1), p.1-14
Hauptverfasser: Zhang, Shuhan, Yang, Fan, Yan, Changhao, Zhou, Dian, Zeng, Xuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 1
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 41
creator Zhang, Shuhan
Yang, Fan
Yan, Changhao
Zhou, Dian
Zeng, Xuan
description Bayesian optimization is a promising methodology for analog circuit synthesis. However, the sequential nature of the Bayesian optimization framework significantly limits its ability to fully utilize real-world computational resources. In this article, we propose an efficient parallelizable Bayesian optimization algorithm via multiobjective acquisition function ensemble (MACE) to further accelerate the optimization procedure. By sampling query points from the Pareto front of the probability of improvement (PI), expected improvement (EI), and lower confidence bound (LCB), we combine the benefits of state-of-the-art acquisition functions to achieve a delicate tradeoff between exploration and exploitation for the unconstrained optimization problem. Based on this batch design, we further adjust the algorithm for the constrained optimization problem. By dividing the optimization procedure into two stages and first focusing on finding an initial feasible point, we manage to gain more information about the valid region and can better avoid sampling around the infeasible area. After achieving the first feasible point, we favor the feasible region by adopting a specially designed penalization term to the acquisition function ensemble. The experimental results quantitatively demonstrate that our proposed algorithm can reduce the overall simulation time by up to 74\times compared to differential evolution (DE) for the unconstrained optimization problem when the batch size is 15. For the constrained optimization problem, our proposed algorithm can speed up the optimization process by up to 15\times compared to the weighted EI-based Bayesian optimization (WEIBO) approach, when the batch size is 15.
doi_str_mv 10.1109/TCAD.2021.3054811
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2612470008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9336041</ieee_id><sourcerecordid>2612470008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b4815c3fdd25bdb6cd5496947dce470f1cefbe823cc7cf50b62ade7411a449f03</originalsourceid><addsrcrecordid>eNo9kMFu2zAMhoVhBZq1e4BiFwE7OyMl2Y6PnpdtBTr00O5syDK1KEjkVJILZMc9eZWl6IkA8X8_yI-xG4QlIjRfHrv221KAwKWEUq0Q37EFNrIuFJb4ni1A1KsCoIZL9iHGLQCqUjQL9q_1fG2tM4584l91Mpuim3xMQTtPY94cKTrt-f0hub37q5ObPG8PhzBps-F2Crz1ejf94Z0LZnaJPxx92mQm8men-a95l4lhSya5Z-KteZpddP9L1j7SftjRNbuwehfp4-u8Yr-_rx-7n8Xd_Y_brr0rjGhkKob8VWmkHUdRDuNQmbFUTdWoejSkarBoyA60EtKY2tgShkrokWqFqJVqLMgr9vncm29_mimmfjvNIR8fe1GhyB0Aq5zCc8qEKcZAtj8Et9fh2CP0J9X9SXV_Ut2_qs7MpzPjiOgt30hZgUL5Ai0HfQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612470008</pqid></control><display><type>article</type><title>An Efficient Batch-Constrained Bayesian Optimization Approach for Analog Circuit Synthesis via Multiobjective Acquisition Ensemble</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Shuhan ; Yang, Fan ; Yan, Changhao ; Zhou, Dian ; Zeng, Xuan</creator><creatorcontrib>Zhang, Shuhan ; Yang, Fan ; Yan, Changhao ; Zhou, Dian ; Zeng, Xuan</creatorcontrib><description><![CDATA[Bayesian optimization is a promising methodology for analog circuit synthesis. However, the sequential nature of the Bayesian optimization framework significantly limits its ability to fully utilize real-world computational resources. In this article, we propose an efficient parallelizable Bayesian optimization algorithm via multiobjective acquisition function ensemble (MACE) to further accelerate the optimization procedure. By sampling query points from the Pareto front of the probability of improvement (PI), expected improvement (EI), and lower confidence bound (LCB), we combine the benefits of state-of-the-art acquisition functions to achieve a delicate tradeoff between exploration and exploitation for the unconstrained optimization problem. Based on this batch design, we further adjust the algorithm for the constrained optimization problem. By dividing the optimization procedure into two stages and first focusing on finding an initial feasible point, we manage to gain more information about the valid region and can better avoid sampling around the infeasible area. After achieving the first feasible point, we favor the feasible region by adopting a specially designed penalization term to the acquisition function ensemble. The experimental results quantitatively demonstrate that our proposed algorithm can reduce the overall simulation time by up to <inline-formula> <tex-math notation="LaTeX">74\times </tex-math></inline-formula> compared to differential evolution (DE) for the unconstrained optimization problem when the batch size is 15. For the constrained optimization problem, our proposed algorithm can speed up the optimization process by up to <inline-formula> <tex-math notation="LaTeX">15\times </tex-math></inline-formula> compared to the weighted EI-based Bayesian optimization (WEIBO) approach, when the batch size is 15.]]></description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2021.3054811</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acquisition function ; Algorithms ; analog circuit synthesis ; Analog circuits ; batch Bayesian optimization ; Bayes methods ; Bayesian analysis ; Circuit synthesis ; constrained optimization problem ; Evolutionary computation ; Gaussian processes ; Integrated circuit modeling ; Multiple objective analysis ; Optimization ; Parallel processing ; Sampling ; Space exploration ; Synthesis</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2022-01, Vol.41 (1), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b4815c3fdd25bdb6cd5496947dce470f1cefbe823cc7cf50b62ade7411a449f03</citedby><cites>FETCH-LOGICAL-c293t-b4815c3fdd25bdb6cd5496947dce470f1cefbe823cc7cf50b62ade7411a449f03</cites><orcidid>0000-0002-3959-8893 ; 0000-0003-2164-8175 ; 0000-0002-8097-4053 ; 0000-0002-8936-3945 ; 0000-0002-2648-5232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9336041$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9336041$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Shuhan</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Yan, Changhao</creatorcontrib><creatorcontrib>Zhou, Dian</creatorcontrib><creatorcontrib>Zeng, Xuan</creatorcontrib><title>An Efficient Batch-Constrained Bayesian Optimization Approach for Analog Circuit Synthesis via Multiobjective Acquisition Ensemble</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description><![CDATA[Bayesian optimization is a promising methodology for analog circuit synthesis. However, the sequential nature of the Bayesian optimization framework significantly limits its ability to fully utilize real-world computational resources. In this article, we propose an efficient parallelizable Bayesian optimization algorithm via multiobjective acquisition function ensemble (MACE) to further accelerate the optimization procedure. By sampling query points from the Pareto front of the probability of improvement (PI), expected improvement (EI), and lower confidence bound (LCB), we combine the benefits of state-of-the-art acquisition functions to achieve a delicate tradeoff between exploration and exploitation for the unconstrained optimization problem. Based on this batch design, we further adjust the algorithm for the constrained optimization problem. By dividing the optimization procedure into two stages and first focusing on finding an initial feasible point, we manage to gain more information about the valid region and can better avoid sampling around the infeasible area. After achieving the first feasible point, we favor the feasible region by adopting a specially designed penalization term to the acquisition function ensemble. The experimental results quantitatively demonstrate that our proposed algorithm can reduce the overall simulation time by up to <inline-formula> <tex-math notation="LaTeX">74\times </tex-math></inline-formula> compared to differential evolution (DE) for the unconstrained optimization problem when the batch size is 15. For the constrained optimization problem, our proposed algorithm can speed up the optimization process by up to <inline-formula> <tex-math notation="LaTeX">15\times </tex-math></inline-formula> compared to the weighted EI-based Bayesian optimization (WEIBO) approach, when the batch size is 15.]]></description><subject>Acquisition function</subject><subject>Algorithms</subject><subject>analog circuit synthesis</subject><subject>Analog circuits</subject><subject>batch Bayesian optimization</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Circuit synthesis</subject><subject>constrained optimization problem</subject><subject>Evolutionary computation</subject><subject>Gaussian processes</subject><subject>Integrated circuit modeling</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Parallel processing</subject><subject>Sampling</subject><subject>Space exploration</subject><subject>Synthesis</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFu2zAMhoVhBZq1e4BiFwE7OyMl2Y6PnpdtBTr00O5syDK1KEjkVJILZMc9eZWl6IkA8X8_yI-xG4QlIjRfHrv221KAwKWEUq0Q37EFNrIuFJb4ni1A1KsCoIZL9iHGLQCqUjQL9q_1fG2tM4584l91Mpuim3xMQTtPY94cKTrt-f0hub37q5ObPG8PhzBps-F2Crz1ejf94Z0LZnaJPxx92mQm8men-a95l4lhSya5Z-KteZpddP9L1j7SftjRNbuwehfp4-u8Yr-_rx-7n8Xd_Y_brr0rjGhkKob8VWmkHUdRDuNQmbFUTdWoejSkarBoyA60EtKY2tgShkrokWqFqJVqLMgr9vncm29_mimmfjvNIR8fe1GhyB0Aq5zCc8qEKcZAtj8Et9fh2CP0J9X9SXV_Ut2_qs7MpzPjiOgt30hZgUL5Ai0HfQ8</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Zhang, Shuhan</creator><creator>Yang, Fan</creator><creator>Yan, Changhao</creator><creator>Zhou, Dian</creator><creator>Zeng, Xuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3959-8893</orcidid><orcidid>https://orcid.org/0000-0003-2164-8175</orcidid><orcidid>https://orcid.org/0000-0002-8097-4053</orcidid><orcidid>https://orcid.org/0000-0002-8936-3945</orcidid><orcidid>https://orcid.org/0000-0002-2648-5232</orcidid></search><sort><creationdate>202201</creationdate><title>An Efficient Batch-Constrained Bayesian Optimization Approach for Analog Circuit Synthesis via Multiobjective Acquisition Ensemble</title><author>Zhang, Shuhan ; Yang, Fan ; Yan, Changhao ; Zhou, Dian ; Zeng, Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b4815c3fdd25bdb6cd5496947dce470f1cefbe823cc7cf50b62ade7411a449f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acquisition function</topic><topic>Algorithms</topic><topic>analog circuit synthesis</topic><topic>Analog circuits</topic><topic>batch Bayesian optimization</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Circuit synthesis</topic><topic>constrained optimization problem</topic><topic>Evolutionary computation</topic><topic>Gaussian processes</topic><topic>Integrated circuit modeling</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Parallel processing</topic><topic>Sampling</topic><topic>Space exploration</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuhan</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Yan, Changhao</creatorcontrib><creatorcontrib>Zhou, Dian</creatorcontrib><creatorcontrib>Zeng, Xuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Shuhan</au><au>Yang, Fan</au><au>Yan, Changhao</au><au>Zhou, Dian</au><au>Zeng, Xuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Batch-Constrained Bayesian Optimization Approach for Analog Circuit Synthesis via Multiobjective Acquisition Ensemble</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2022-01</date><risdate>2022</risdate><volume>41</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract><![CDATA[Bayesian optimization is a promising methodology for analog circuit synthesis. However, the sequential nature of the Bayesian optimization framework significantly limits its ability to fully utilize real-world computational resources. In this article, we propose an efficient parallelizable Bayesian optimization algorithm via multiobjective acquisition function ensemble (MACE) to further accelerate the optimization procedure. By sampling query points from the Pareto front of the probability of improvement (PI), expected improvement (EI), and lower confidence bound (LCB), we combine the benefits of state-of-the-art acquisition functions to achieve a delicate tradeoff between exploration and exploitation for the unconstrained optimization problem. Based on this batch design, we further adjust the algorithm for the constrained optimization problem. By dividing the optimization procedure into two stages and first focusing on finding an initial feasible point, we manage to gain more information about the valid region and can better avoid sampling around the infeasible area. After achieving the first feasible point, we favor the feasible region by adopting a specially designed penalization term to the acquisition function ensemble. The experimental results quantitatively demonstrate that our proposed algorithm can reduce the overall simulation time by up to <inline-formula> <tex-math notation="LaTeX">74\times </tex-math></inline-formula> compared to differential evolution (DE) for the unconstrained optimization problem when the batch size is 15. For the constrained optimization problem, our proposed algorithm can speed up the optimization process by up to <inline-formula> <tex-math notation="LaTeX">15\times </tex-math></inline-formula> compared to the weighted EI-based Bayesian optimization (WEIBO) approach, when the batch size is 15.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2021.3054811</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3959-8893</orcidid><orcidid>https://orcid.org/0000-0003-2164-8175</orcidid><orcidid>https://orcid.org/0000-0002-8097-4053</orcidid><orcidid>https://orcid.org/0000-0002-8936-3945</orcidid><orcidid>https://orcid.org/0000-0002-2648-5232</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2022-01, Vol.41 (1), p.1-14
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_journals_2612470008
source IEEE Electronic Library (IEL)
subjects Acquisition function
Algorithms
analog circuit synthesis
Analog circuits
batch Bayesian optimization
Bayes methods
Bayesian analysis
Circuit synthesis
constrained optimization problem
Evolutionary computation
Gaussian processes
Integrated circuit modeling
Multiple objective analysis
Optimization
Parallel processing
Sampling
Space exploration
Synthesis
title An Efficient Batch-Constrained Bayesian Optimization Approach for Analog Circuit Synthesis via Multiobjective Acquisition Ensemble
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Batch-Constrained%20Bayesian%20Optimization%20Approach%20for%20Analog%20Circuit%20Synthesis%20via%20Multiobjective%20Acquisition%20Ensemble&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Zhang,%20Shuhan&rft.date=2022-01&rft.volume=41&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2021.3054811&rft_dat=%3Cproquest_RIE%3E2612470008%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612470008&rft_id=info:pmid/&rft_ieee_id=9336041&rfr_iscdi=true