Quantifying the Environmental Sensitivity of SSTDR Signals for Monitoring PV Strings
Current spread spectrum time-domain reflectometry (SSTDR) fault detection methods in photovoltaics compare measurements with a fault-free baselin.Yet, environmental factors, such as illuminance, temperature, and humidity, affect these signals and can negatively affect our ability to detect and locat...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2022-01, Vol.12 (1), p.381-387 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 387 |
---|---|
container_issue | 1 |
container_start_page | 381 |
container_title | IEEE journal of photovoltaics |
container_volume | 12 |
creator | LaFlamme, Cody Benoit, Evan Edun, Ayobami Furse, Cynthia M. Kuhn, Paul K. Scarpulla, Michael A. Harley, Joel B. |
description | Current spread spectrum time-domain reflectometry (SSTDR) fault detection methods in photovoltaics compare measurements with a fault-free baselin.Yet, environmental factors, such as illuminance, temperature, and humidity, affect these signals and can negatively affect our ability to detect and locate faults. This article explains and quantifies the effects of environmental factors on SSTDR measurements. We demonstrate that illuminance, temperature, and humidity each significantly affect reflections from photovoltaic panels, which require the use of up to 240 baselines to prevent environmental variation from obscuring faults. We present a method to determine the number of required baselines in any given climate and motivate future work in baseline prediction. |
doi_str_mv | 10.1109/JPHOTOV.2021.3127465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2612469715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9628168</ieee_id><sourcerecordid>2612469715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-d21fb81171b451631bb43086a9856a355aec47872b7d0c8d5b3a275d368c1bb03</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqjwBbCwYN3i8SvOEvEqqKhAClsrcR1wVWyw3Ur9exK1MJuZxblXmoPQGZARACkvH5_H09n0fUQJhREDWnAp9tARBSGHjBO2_3czBYfoJKUF6UYSISU_QrOXVe2zazfOf-D8afGtX7sY_Jf1uV7iyvrkslu7vMGhxVU1u3nFlfvw9TLhNkT8FLzLIfbp53dc5f5Kx-ig7QB7stsD9HZ3O7seDyfT-4frq8nQsILm4ZxC2yiAAhouQDJoGs6IknWphKyZELU1vFAFbYo5MWouGlbTQsyZVKZjCRug821vSNnpZFy25tME763JGkpFeNc6QBdb6DuGn5VNWS_CKvYPaCqBclkWIDqKbykTQ0rRtvo7uq86bjQQ3XvWO8-696x3nrvY6TbmrLX_kVJSBVKxXyxfeHU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612469715</pqid></control><display><type>article</type><title>Quantifying the Environmental Sensitivity of SSTDR Signals for Monitoring PV Strings</title><source>IEEE Electronic Library (IEL)</source><creator>LaFlamme, Cody ; Benoit, Evan ; Edun, Ayobami ; Furse, Cynthia M. ; Kuhn, Paul K. ; Scarpulla, Michael A. ; Harley, Joel B.</creator><creatorcontrib>LaFlamme, Cody ; Benoit, Evan ; Edun, Ayobami ; Furse, Cynthia M. ; Kuhn, Paul K. ; Scarpulla, Michael A. ; Harley, Joel B. ; Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><description>Current spread spectrum time-domain reflectometry (SSTDR) fault detection methods in photovoltaics compare measurements with a fault-free baselin.Yet, environmental factors, such as illuminance, temperature, and humidity, affect these signals and can negatively affect our ability to detect and locate faults. This article explains and quantifies the effects of environmental factors on SSTDR measurements. We demonstrate that illuminance, temperature, and humidity each significantly affect reflections from photovoltaic panels, which require the use of up to 240 baselines to prevent environmental variation from obscuring faults. We present a method to determine the number of required baselines in any given climate and motivate future work in baseline prediction.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2021.3127465</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circuit faults ; Condition monitoring ; Data models ; electrical fault detection ; Energy & Fuels ; Fault detection ; Fault location ; Humidity ; Humidity measurement ; Illuminance ; Materials Science ; modeling ; Photovoltaic cells ; photovoltaic systems ; Physics ; power system faults ; reflectometry ; Signal monitoring ; Spread spectrum ; spread spectrum time domain reflectometry (SSTDR) ; Temperature measurement ; Training</subject><ispartof>IEEE journal of photovoltaics, 2022-01, Vol.12 (1), p.381-387</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-d21fb81171b451631bb43086a9856a355aec47872b7d0c8d5b3a275d368c1bb03</citedby><cites>FETCH-LOGICAL-c372t-d21fb81171b451631bb43086a9856a355aec47872b7d0c8d5b3a275d368c1bb03</cites><orcidid>0000-0002-8764-5252 ; 0000-0003-2758-7262 ; 0000-0001-8920-1498 ; 0000-0003-2309-2051 ; 0000-0003-0046-8781 ; 0000-0002-7139-7231 ; 0000-0002-6084-6839 ; 0000000323092051 ; 0000000327587262 ; 0000000260846839 ; 0000000271397231 ; 0000000300468781 ; 0000000189201498 ; 0000000287645252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9628168$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9628168$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1980416$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>LaFlamme, Cody</creatorcontrib><creatorcontrib>Benoit, Evan</creatorcontrib><creatorcontrib>Edun, Ayobami</creatorcontrib><creatorcontrib>Furse, Cynthia M.</creatorcontrib><creatorcontrib>Kuhn, Paul K.</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><title>Quantifying the Environmental Sensitivity of SSTDR Signals for Monitoring PV Strings</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Current spread spectrum time-domain reflectometry (SSTDR) fault detection methods in photovoltaics compare measurements with a fault-free baselin.Yet, environmental factors, such as illuminance, temperature, and humidity, affect these signals and can negatively affect our ability to detect and locate faults. This article explains and quantifies the effects of environmental factors on SSTDR measurements. We demonstrate that illuminance, temperature, and humidity each significantly affect reflections from photovoltaic panels, which require the use of up to 240 baselines to prevent environmental variation from obscuring faults. We present a method to determine the number of required baselines in any given climate and motivate future work in baseline prediction.</description><subject>Circuit faults</subject><subject>Condition monitoring</subject><subject>Data models</subject><subject>electrical fault detection</subject><subject>Energy & Fuels</subject><subject>Fault detection</subject><subject>Fault location</subject><subject>Humidity</subject><subject>Humidity measurement</subject><subject>Illuminance</subject><subject>Materials Science</subject><subject>modeling</subject><subject>Photovoltaic cells</subject><subject>photovoltaic systems</subject><subject>Physics</subject><subject>power system faults</subject><subject>reflectometry</subject><subject>Signal monitoring</subject><subject>Spread spectrum</subject><subject>spread spectrum time domain reflectometry (SSTDR)</subject><subject>Temperature measurement</subject><subject>Training</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqjwBbCwYN3i8SvOEvEqqKhAClsrcR1wVWyw3Ur9exK1MJuZxblXmoPQGZARACkvH5_H09n0fUQJhREDWnAp9tARBSGHjBO2_3czBYfoJKUF6UYSISU_QrOXVe2zazfOf-D8afGtX7sY_Jf1uV7iyvrkslu7vMGhxVU1u3nFlfvw9TLhNkT8FLzLIfbp53dc5f5Kx-ig7QB7stsD9HZ3O7seDyfT-4frq8nQsILm4ZxC2yiAAhouQDJoGs6IknWphKyZELU1vFAFbYo5MWouGlbTQsyZVKZjCRug821vSNnpZFy25tME763JGkpFeNc6QBdb6DuGn5VNWS_CKvYPaCqBclkWIDqKbykTQ0rRtvo7uq86bjQQ3XvWO8-696x3nrvY6TbmrLX_kVJSBVKxXyxfeHU</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>LaFlamme, Cody</creator><creator>Benoit, Evan</creator><creator>Edun, Ayobami</creator><creator>Furse, Cynthia M.</creator><creator>Kuhn, Paul K.</creator><creator>Scarpulla, Michael A.</creator><creator>Harley, Joel B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8764-5252</orcidid><orcidid>https://orcid.org/0000-0003-2758-7262</orcidid><orcidid>https://orcid.org/0000-0001-8920-1498</orcidid><orcidid>https://orcid.org/0000-0003-2309-2051</orcidid><orcidid>https://orcid.org/0000-0003-0046-8781</orcidid><orcidid>https://orcid.org/0000-0002-7139-7231</orcidid><orcidid>https://orcid.org/0000-0002-6084-6839</orcidid><orcidid>https://orcid.org/0000000323092051</orcidid><orcidid>https://orcid.org/0000000327587262</orcidid><orcidid>https://orcid.org/0000000260846839</orcidid><orcidid>https://orcid.org/0000000271397231</orcidid><orcidid>https://orcid.org/0000000300468781</orcidid><orcidid>https://orcid.org/0000000189201498</orcidid><orcidid>https://orcid.org/0000000287645252</orcidid></search><sort><creationdate>202201</creationdate><title>Quantifying the Environmental Sensitivity of SSTDR Signals for Monitoring PV Strings</title><author>LaFlamme, Cody ; Benoit, Evan ; Edun, Ayobami ; Furse, Cynthia M. ; Kuhn, Paul K. ; Scarpulla, Michael A. ; Harley, Joel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-d21fb81171b451631bb43086a9856a355aec47872b7d0c8d5b3a275d368c1bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuit faults</topic><topic>Condition monitoring</topic><topic>Data models</topic><topic>electrical fault detection</topic><topic>Energy & Fuels</topic><topic>Fault detection</topic><topic>Fault location</topic><topic>Humidity</topic><topic>Humidity measurement</topic><topic>Illuminance</topic><topic>Materials Science</topic><topic>modeling</topic><topic>Photovoltaic cells</topic><topic>photovoltaic systems</topic><topic>Physics</topic><topic>power system faults</topic><topic>reflectometry</topic><topic>Signal monitoring</topic><topic>Spread spectrum</topic><topic>spread spectrum time domain reflectometry (SSTDR)</topic><topic>Temperature measurement</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaFlamme, Cody</creatorcontrib><creatorcontrib>Benoit, Evan</creatorcontrib><creatorcontrib>Edun, Ayobami</creatorcontrib><creatorcontrib>Furse, Cynthia M.</creatorcontrib><creatorcontrib>Kuhn, Paul K.</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LaFlamme, Cody</au><au>Benoit, Evan</au><au>Edun, Ayobami</au><au>Furse, Cynthia M.</au><au>Kuhn, Paul K.</au><au>Scarpulla, Michael A.</au><au>Harley, Joel B.</au><aucorp>Univ. of Utah, Salt Lake City, UT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Environmental Sensitivity of SSTDR Signals for Monitoring PV Strings</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2022-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>381</spage><epage>387</epage><pages>381-387</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Current spread spectrum time-domain reflectometry (SSTDR) fault detection methods in photovoltaics compare measurements with a fault-free baselin.Yet, environmental factors, such as illuminance, temperature, and humidity, affect these signals and can negatively affect our ability to detect and locate faults. This article explains and quantifies the effects of environmental factors on SSTDR measurements. We demonstrate that illuminance, temperature, and humidity each significantly affect reflections from photovoltaic panels, which require the use of up to 240 baselines to prevent environmental variation from obscuring faults. We present a method to determine the number of required baselines in any given climate and motivate future work in baseline prediction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2021.3127465</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8764-5252</orcidid><orcidid>https://orcid.org/0000-0003-2758-7262</orcidid><orcidid>https://orcid.org/0000-0001-8920-1498</orcidid><orcidid>https://orcid.org/0000-0003-2309-2051</orcidid><orcidid>https://orcid.org/0000-0003-0046-8781</orcidid><orcidid>https://orcid.org/0000-0002-7139-7231</orcidid><orcidid>https://orcid.org/0000-0002-6084-6839</orcidid><orcidid>https://orcid.org/0000000323092051</orcidid><orcidid>https://orcid.org/0000000327587262</orcidid><orcidid>https://orcid.org/0000000260846839</orcidid><orcidid>https://orcid.org/0000000271397231</orcidid><orcidid>https://orcid.org/0000000300468781</orcidid><orcidid>https://orcid.org/0000000189201498</orcidid><orcidid>https://orcid.org/0000000287645252</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2022-01, Vol.12 (1), p.381-387 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_proquest_journals_2612469715 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit faults Condition monitoring Data models electrical fault detection Energy & Fuels Fault detection Fault location Humidity Humidity measurement Illuminance Materials Science modeling Photovoltaic cells photovoltaic systems Physics power system faults reflectometry Signal monitoring Spread spectrum spread spectrum time domain reflectometry (SSTDR) Temperature measurement Training |
title | Quantifying the Environmental Sensitivity of SSTDR Signals for Monitoring PV Strings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Environmental%20Sensitivity%20of%20SSTDR%20Signals%20for%20Monitoring%20PV%20Strings&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=LaFlamme,%20Cody&rft.aucorp=Univ.%20of%20Utah,%20Salt%20Lake%20City,%20UT%20(United%20States)&rft.date=2022-01&rft.volume=12&rft.issue=1&rft.spage=381&rft.epage=387&rft.pages=381-387&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2021.3127465&rft_dat=%3Cproquest_RIE%3E2612469715%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612469715&rft_id=info:pmid/&rft_ieee_id=9628168&rfr_iscdi=true |