Quantifying the Environmental Sensitivity of SSTDR Signals for Monitoring PV Strings

Current spread spectrum time-domain reflectometry (SSTDR) fault detection methods in photovoltaics compare measurements with a fault-free baselin.Yet, environmental factors, such as illuminance, temperature, and humidity, affect these signals and can negatively affect our ability to detect and locat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2022-01, Vol.12 (1), p.381-387
Hauptverfasser: LaFlamme, Cody, Benoit, Evan, Edun, Ayobami, Furse, Cynthia M., Kuhn, Paul K., Scarpulla, Michael A., Harley, Joel B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue 1
container_start_page 381
container_title IEEE journal of photovoltaics
container_volume 12
creator LaFlamme, Cody
Benoit, Evan
Edun, Ayobami
Furse, Cynthia M.
Kuhn, Paul K.
Scarpulla, Michael A.
Harley, Joel B.
description Current spread spectrum time-domain reflectometry (SSTDR) fault detection methods in photovoltaics compare measurements with a fault-free baselin.Yet, environmental factors, such as illuminance, temperature, and humidity, affect these signals and can negatively affect our ability to detect and locate faults. This article explains and quantifies the effects of environmental factors on SSTDR measurements. We demonstrate that illuminance, temperature, and humidity each significantly affect reflections from photovoltaic panels, which require the use of up to 240 baselines to prevent environmental variation from obscuring faults. We present a method to determine the number of required baselines in any given climate and motivate future work in baseline prediction.
doi_str_mv 10.1109/JPHOTOV.2021.3127465
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2612469715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9628168</ieee_id><sourcerecordid>2612469715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-d21fb81171b451631bb43086a9856a355aec47872b7d0c8d5b3a275d368c1bb03</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqjwBbCwYN3i8SvOEvEqqKhAClsrcR1wVWyw3Ur9exK1MJuZxblXmoPQGZARACkvH5_H09n0fUQJhREDWnAp9tARBSGHjBO2_3czBYfoJKUF6UYSISU_QrOXVe2zazfOf-D8afGtX7sY_Jf1uV7iyvrkslu7vMGhxVU1u3nFlfvw9TLhNkT8FLzLIfbp53dc5f5Kx-ig7QB7stsD9HZ3O7seDyfT-4frq8nQsILm4ZxC2yiAAhouQDJoGs6IknWphKyZELU1vFAFbYo5MWouGlbTQsyZVKZjCRug821vSNnpZFy25tME763JGkpFeNc6QBdb6DuGn5VNWS_CKvYPaCqBclkWIDqKbykTQ0rRtvo7uq86bjQQ3XvWO8-696x3nrvY6TbmrLX_kVJSBVKxXyxfeHU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612469715</pqid></control><display><type>article</type><title>Quantifying the Environmental Sensitivity of SSTDR Signals for Monitoring PV Strings</title><source>IEEE Electronic Library (IEL)</source><creator>LaFlamme, Cody ; Benoit, Evan ; Edun, Ayobami ; Furse, Cynthia M. ; Kuhn, Paul K. ; Scarpulla, Michael A. ; Harley, Joel B.</creator><creatorcontrib>LaFlamme, Cody ; Benoit, Evan ; Edun, Ayobami ; Furse, Cynthia M. ; Kuhn, Paul K. ; Scarpulla, Michael A. ; Harley, Joel B. ; Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><description>Current spread spectrum time-domain reflectometry (SSTDR) fault detection methods in photovoltaics compare measurements with a fault-free baselin.Yet, environmental factors, such as illuminance, temperature, and humidity, affect these signals and can negatively affect our ability to detect and locate faults. This article explains and quantifies the effects of environmental factors on SSTDR measurements. We demonstrate that illuminance, temperature, and humidity each significantly affect reflections from photovoltaic panels, which require the use of up to 240 baselines to prevent environmental variation from obscuring faults. We present a method to determine the number of required baselines in any given climate and motivate future work in baseline prediction.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2021.3127465</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circuit faults ; Condition monitoring ; Data models ; electrical fault detection ; Energy &amp; Fuels ; Fault detection ; Fault location ; Humidity ; Humidity measurement ; Illuminance ; Materials Science ; modeling ; Photovoltaic cells ; photovoltaic systems ; Physics ; power system faults ; reflectometry ; Signal monitoring ; Spread spectrum ; spread spectrum time domain reflectometry (SSTDR) ; Temperature measurement ; Training</subject><ispartof>IEEE journal of photovoltaics, 2022-01, Vol.12 (1), p.381-387</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-d21fb81171b451631bb43086a9856a355aec47872b7d0c8d5b3a275d368c1bb03</citedby><cites>FETCH-LOGICAL-c372t-d21fb81171b451631bb43086a9856a355aec47872b7d0c8d5b3a275d368c1bb03</cites><orcidid>0000-0002-8764-5252 ; 0000-0003-2758-7262 ; 0000-0001-8920-1498 ; 0000-0003-2309-2051 ; 0000-0003-0046-8781 ; 0000-0002-7139-7231 ; 0000-0002-6084-6839 ; 0000000323092051 ; 0000000327587262 ; 0000000260846839 ; 0000000271397231 ; 0000000300468781 ; 0000000189201498 ; 0000000287645252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9628168$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9628168$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1980416$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>LaFlamme, Cody</creatorcontrib><creatorcontrib>Benoit, Evan</creatorcontrib><creatorcontrib>Edun, Ayobami</creatorcontrib><creatorcontrib>Furse, Cynthia M.</creatorcontrib><creatorcontrib>Kuhn, Paul K.</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><title>Quantifying the Environmental Sensitivity of SSTDR Signals for Monitoring PV Strings</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Current spread spectrum time-domain reflectometry (SSTDR) fault detection methods in photovoltaics compare measurements with a fault-free baselin.Yet, environmental factors, such as illuminance, temperature, and humidity, affect these signals and can negatively affect our ability to detect and locate faults. This article explains and quantifies the effects of environmental factors on SSTDR measurements. We demonstrate that illuminance, temperature, and humidity each significantly affect reflections from photovoltaic panels, which require the use of up to 240 baselines to prevent environmental variation from obscuring faults. We present a method to determine the number of required baselines in any given climate and motivate future work in baseline prediction.</description><subject>Circuit faults</subject><subject>Condition monitoring</subject><subject>Data models</subject><subject>electrical fault detection</subject><subject>Energy &amp; Fuels</subject><subject>Fault detection</subject><subject>Fault location</subject><subject>Humidity</subject><subject>Humidity measurement</subject><subject>Illuminance</subject><subject>Materials Science</subject><subject>modeling</subject><subject>Photovoltaic cells</subject><subject>photovoltaic systems</subject><subject>Physics</subject><subject>power system faults</subject><subject>reflectometry</subject><subject>Signal monitoring</subject><subject>Spread spectrum</subject><subject>spread spectrum time domain reflectometry (SSTDR)</subject><subject>Temperature measurement</subject><subject>Training</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqjwBbCwYN3i8SvOEvEqqKhAClsrcR1wVWyw3Ur9exK1MJuZxblXmoPQGZARACkvH5_H09n0fUQJhREDWnAp9tARBSGHjBO2_3czBYfoJKUF6UYSISU_QrOXVe2zazfOf-D8afGtX7sY_Jf1uV7iyvrkslu7vMGhxVU1u3nFlfvw9TLhNkT8FLzLIfbp53dc5f5Kx-ig7QB7stsD9HZ3O7seDyfT-4frq8nQsILm4ZxC2yiAAhouQDJoGs6IknWphKyZELU1vFAFbYo5MWouGlbTQsyZVKZjCRug821vSNnpZFy25tME763JGkpFeNc6QBdb6DuGn5VNWS_CKvYPaCqBclkWIDqKbykTQ0rRtvo7uq86bjQQ3XvWO8-696x3nrvY6TbmrLX_kVJSBVKxXyxfeHU</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>LaFlamme, Cody</creator><creator>Benoit, Evan</creator><creator>Edun, Ayobami</creator><creator>Furse, Cynthia M.</creator><creator>Kuhn, Paul K.</creator><creator>Scarpulla, Michael A.</creator><creator>Harley, Joel B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8764-5252</orcidid><orcidid>https://orcid.org/0000-0003-2758-7262</orcidid><orcidid>https://orcid.org/0000-0001-8920-1498</orcidid><orcidid>https://orcid.org/0000-0003-2309-2051</orcidid><orcidid>https://orcid.org/0000-0003-0046-8781</orcidid><orcidid>https://orcid.org/0000-0002-7139-7231</orcidid><orcidid>https://orcid.org/0000-0002-6084-6839</orcidid><orcidid>https://orcid.org/0000000323092051</orcidid><orcidid>https://orcid.org/0000000327587262</orcidid><orcidid>https://orcid.org/0000000260846839</orcidid><orcidid>https://orcid.org/0000000271397231</orcidid><orcidid>https://orcid.org/0000000300468781</orcidid><orcidid>https://orcid.org/0000000189201498</orcidid><orcidid>https://orcid.org/0000000287645252</orcidid></search><sort><creationdate>202201</creationdate><title>Quantifying the Environmental Sensitivity of SSTDR Signals for Monitoring PV Strings</title><author>LaFlamme, Cody ; Benoit, Evan ; Edun, Ayobami ; Furse, Cynthia M. ; Kuhn, Paul K. ; Scarpulla, Michael A. ; Harley, Joel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-d21fb81171b451631bb43086a9856a355aec47872b7d0c8d5b3a275d368c1bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuit faults</topic><topic>Condition monitoring</topic><topic>Data models</topic><topic>electrical fault detection</topic><topic>Energy &amp; Fuels</topic><topic>Fault detection</topic><topic>Fault location</topic><topic>Humidity</topic><topic>Humidity measurement</topic><topic>Illuminance</topic><topic>Materials Science</topic><topic>modeling</topic><topic>Photovoltaic cells</topic><topic>photovoltaic systems</topic><topic>Physics</topic><topic>power system faults</topic><topic>reflectometry</topic><topic>Signal monitoring</topic><topic>Spread spectrum</topic><topic>spread spectrum time domain reflectometry (SSTDR)</topic><topic>Temperature measurement</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaFlamme, Cody</creatorcontrib><creatorcontrib>Benoit, Evan</creatorcontrib><creatorcontrib>Edun, Ayobami</creatorcontrib><creatorcontrib>Furse, Cynthia M.</creatorcontrib><creatorcontrib>Kuhn, Paul K.</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LaFlamme, Cody</au><au>Benoit, Evan</au><au>Edun, Ayobami</au><au>Furse, Cynthia M.</au><au>Kuhn, Paul K.</au><au>Scarpulla, Michael A.</au><au>Harley, Joel B.</au><aucorp>Univ. of Utah, Salt Lake City, UT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Environmental Sensitivity of SSTDR Signals for Monitoring PV Strings</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2022-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>381</spage><epage>387</epage><pages>381-387</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Current spread spectrum time-domain reflectometry (SSTDR) fault detection methods in photovoltaics compare measurements with a fault-free baselin.Yet, environmental factors, such as illuminance, temperature, and humidity, affect these signals and can negatively affect our ability to detect and locate faults. This article explains and quantifies the effects of environmental factors on SSTDR measurements. We demonstrate that illuminance, temperature, and humidity each significantly affect reflections from photovoltaic panels, which require the use of up to 240 baselines to prevent environmental variation from obscuring faults. We present a method to determine the number of required baselines in any given climate and motivate future work in baseline prediction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2021.3127465</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8764-5252</orcidid><orcidid>https://orcid.org/0000-0003-2758-7262</orcidid><orcidid>https://orcid.org/0000-0001-8920-1498</orcidid><orcidid>https://orcid.org/0000-0003-2309-2051</orcidid><orcidid>https://orcid.org/0000-0003-0046-8781</orcidid><orcidid>https://orcid.org/0000-0002-7139-7231</orcidid><orcidid>https://orcid.org/0000-0002-6084-6839</orcidid><orcidid>https://orcid.org/0000000323092051</orcidid><orcidid>https://orcid.org/0000000327587262</orcidid><orcidid>https://orcid.org/0000000260846839</orcidid><orcidid>https://orcid.org/0000000271397231</orcidid><orcidid>https://orcid.org/0000000300468781</orcidid><orcidid>https://orcid.org/0000000189201498</orcidid><orcidid>https://orcid.org/0000000287645252</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2022-01, Vol.12 (1), p.381-387
issn 2156-3381
2156-3403
language eng
recordid cdi_proquest_journals_2612469715
source IEEE Electronic Library (IEL)
subjects Circuit faults
Condition monitoring
Data models
electrical fault detection
Energy & Fuels
Fault detection
Fault location
Humidity
Humidity measurement
Illuminance
Materials Science
modeling
Photovoltaic cells
photovoltaic systems
Physics
power system faults
reflectometry
Signal monitoring
Spread spectrum
spread spectrum time domain reflectometry (SSTDR)
Temperature measurement
Training
title Quantifying the Environmental Sensitivity of SSTDR Signals for Monitoring PV Strings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Environmental%20Sensitivity%20of%20SSTDR%20Signals%20for%20Monitoring%20PV%20Strings&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=LaFlamme,%20Cody&rft.aucorp=Univ.%20of%20Utah,%20Salt%20Lake%20City,%20UT%20(United%20States)&rft.date=2022-01&rft.volume=12&rft.issue=1&rft.spage=381&rft.epage=387&rft.pages=381-387&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2021.3127465&rft_dat=%3Cproquest_RIE%3E2612469715%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612469715&rft_id=info:pmid/&rft_ieee_id=9628168&rfr_iscdi=true