Review on mechanics of ultra-high-temperature materials

Ultra-high-temperature materials have applications in aerospace and nuclear industry. They are usually subjected to complex thermal environments during service. The mechanical properties of materials in ultra-high-temperature environments have been attracted increasing attentions. However, the chara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica Sinica 2021-09, Vol.37 (9), p.1347-1370
Hauptverfasser: Fang, Daining, Li, Weiguo, Cheng, Tianbao, Qu, Zhaoliang, Chen, Yanfei, Wang, Ruzhuan, Ai, Shigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1370
container_issue 9
container_start_page 1347
container_title Acta mechanica Sinica
container_volume 37
creator Fang, Daining
Li, Weiguo
Cheng, Tianbao
Qu, Zhaoliang
Chen, Yanfei
Wang, Ruzhuan
Ai, Shigang
description Ultra-high-temperature materials have applications in aerospace and nuclear industry. They are usually subjected to complex thermal environments during service. The mechanical properties of materials in ultra-high-temperature environments have been attracted increasing attentions. However, the characterization and evaluation of ultra-high-temperature mechanical properties of materials are still challenging work. This article presents a review on the mechanical properties of materials at elevated temperatures. The experimental results and techniques on the ultra-high-temperature mechanical properties of materials are reviewed. The constitutive models of materials at elevated temperatures are discussed. The recent research progress on the quantitative theoretical characterization models for the temperature-dependent fracture strength of advanced ceramics and their composites is also given, and the emphasis is placed on the applications of the force-heat equivalence energy density principle. The thermal–mechanical-oxygen coupled computational mechanics of materials are discussed. Furthermore, the outlook and concluding remarks are highlighted.
doi_str_mv 10.1007/s10409-021-01146-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2612412583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612412583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-30219c6c299dc5a9984e1b63b67361c08705d8f7eb4e980a9e0a775df52302253</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwNOC5-h7ySbZHKX4DwqC6Dmk6dt2S3e3JlvFb2_qCt48zWV-M8MwdolwjQDmJiGUYDkI5IBYai6P2AQ1llwi6mM2AaUNNwarU3aW0gZAajQ4YeaFPhr6LPquaCmsfdeEVPR1sd8O0fN1s1rzgdodRT_sIxWtHyg2fpvO2UmdhS5-dcre7u9eZ498_vzwNLud8yArNXCZF9mgg7B2GZS3tioJF1outMkDAlQG1LKqDS1KshV4S-CNUctaiYwKJafsaszdxf59T2lwm34fu1zphEZRolCVzC4xukLsU4pUu11sWh-_HII7HOTGg1ye434OcgdIjlDK5m5F8S_6H-ob1EFmyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612412583</pqid></control><display><type>article</type><title>Review on mechanics of ultra-high-temperature materials</title><source>Springer Nature - Complete Springer Journals</source><creator>Fang, Daining ; Li, Weiguo ; Cheng, Tianbao ; Qu, Zhaoliang ; Chen, Yanfei ; Wang, Ruzhuan ; Ai, Shigang</creator><creatorcontrib>Fang, Daining ; Li, Weiguo ; Cheng, Tianbao ; Qu, Zhaoliang ; Chen, Yanfei ; Wang, Ruzhuan ; Ai, Shigang</creatorcontrib><description>Ultra-high-temperature materials have applications in aerospace and nuclear industry. They are usually subjected to complex thermal environments during service. The mechanical properties of materials in ultra-high-temperature environments have been attracted increasing attentions. However, the characterization and evaluation of ultra-high-temperature mechanical properties of materials are still challenging work. This article presents a review on the mechanical properties of materials at elevated temperatures. The experimental results and techniques on the ultra-high-temperature mechanical properties of materials are reviewed. The constitutive models of materials at elevated temperatures are discussed. The recent research progress on the quantitative theoretical characterization models for the temperature-dependent fracture strength of advanced ceramics and their composites is also given, and the emphasis is placed on the applications of the force-heat equivalence energy density principle. The thermal–mechanical-oxygen coupled computational mechanics of materials are discussed. Furthermore, the outlook and concluding remarks are highlighted.</description><edition>English ed.</edition><identifier>ISSN: 0567-7718</identifier><identifier>EISSN: 1614-3116</identifier><identifier>DOI: 10.1007/s10409-021-01146-3</identifier><language>eng</language><publisher>Beijing: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</publisher><subject>Aerospace industry ; Classical and Continuum Physics ; Computational Intelligence ; Computational mechanics ; Constitutive models ; Engineering ; Engineering Fluid Dynamics ; Flux density ; Fracture strength ; High temperature environments ; Invited Review ; Material properties ; Mathematical models ; Mechanical properties ; Temperature ; Temperature dependence ; Theoretical and Applied Mechanics ; Thermal environments</subject><ispartof>Acta mechanica Sinica, 2021-09, Vol.37 (9), p.1347-1370</ispartof><rights>The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-30219c6c299dc5a9984e1b63b67361c08705d8f7eb4e980a9e0a775df52302253</citedby><cites>FETCH-LOGICAL-c385t-30219c6c299dc5a9984e1b63b67361c08705d8f7eb4e980a9e0a775df52302253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10409-021-01146-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10409-021-01146-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fang, Daining</creatorcontrib><creatorcontrib>Li, Weiguo</creatorcontrib><creatorcontrib>Cheng, Tianbao</creatorcontrib><creatorcontrib>Qu, Zhaoliang</creatorcontrib><creatorcontrib>Chen, Yanfei</creatorcontrib><creatorcontrib>Wang, Ruzhuan</creatorcontrib><creatorcontrib>Ai, Shigang</creatorcontrib><title>Review on mechanics of ultra-high-temperature materials</title><title>Acta mechanica Sinica</title><addtitle>Acta Mech. Sin</addtitle><description>Ultra-high-temperature materials have applications in aerospace and nuclear industry. They are usually subjected to complex thermal environments during service. The mechanical properties of materials in ultra-high-temperature environments have been attracted increasing attentions. However, the characterization and evaluation of ultra-high-temperature mechanical properties of materials are still challenging work. This article presents a review on the mechanical properties of materials at elevated temperatures. The experimental results and techniques on the ultra-high-temperature mechanical properties of materials are reviewed. The constitutive models of materials at elevated temperatures are discussed. The recent research progress on the quantitative theoretical characterization models for the temperature-dependent fracture strength of advanced ceramics and their composites is also given, and the emphasis is placed on the applications of the force-heat equivalence energy density principle. The thermal–mechanical-oxygen coupled computational mechanics of materials are discussed. Furthermore, the outlook and concluding remarks are highlighted.</description><subject>Aerospace industry</subject><subject>Classical and Continuum Physics</subject><subject>Computational Intelligence</subject><subject>Computational mechanics</subject><subject>Constitutive models</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Flux density</subject><subject>Fracture strength</subject><subject>High temperature environments</subject><subject>Invited Review</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermal environments</subject><issn>0567-7718</issn><issn>1614-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKtfwNOC5-h7ySbZHKX4DwqC6Dmk6dt2S3e3JlvFb2_qCt48zWV-M8MwdolwjQDmJiGUYDkI5IBYai6P2AQ1llwi6mM2AaUNNwarU3aW0gZAajQ4YeaFPhr6LPquaCmsfdeEVPR1sd8O0fN1s1rzgdodRT_sIxWtHyg2fpvO2UmdhS5-dcre7u9eZ498_vzwNLud8yArNXCZF9mgg7B2GZS3tioJF1outMkDAlQG1LKqDS1KshV4S-CNUctaiYwKJafsaszdxf59T2lwm34fu1zphEZRolCVzC4xukLsU4pUu11sWh-_HII7HOTGg1ye434OcgdIjlDK5m5F8S_6H-ob1EFmyw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Fang, Daining</creator><creator>Li, Weiguo</creator><creator>Cheng, Tianbao</creator><creator>Qu, Zhaoliang</creator><creator>Chen, Yanfei</creator><creator>Wang, Ruzhuan</creator><creator>Ai, Shigang</creator><general>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Review on mechanics of ultra-high-temperature materials</title><author>Fang, Daining ; Li, Weiguo ; Cheng, Tianbao ; Qu, Zhaoliang ; Chen, Yanfei ; Wang, Ruzhuan ; Ai, Shigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-30219c6c299dc5a9984e1b63b67361c08705d8f7eb4e980a9e0a775df52302253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace industry</topic><topic>Classical and Continuum Physics</topic><topic>Computational Intelligence</topic><topic>Computational mechanics</topic><topic>Constitutive models</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Flux density</topic><topic>Fracture strength</topic><topic>High temperature environments</topic><topic>Invited Review</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermal environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Daining</creatorcontrib><creatorcontrib>Li, Weiguo</creatorcontrib><creatorcontrib>Cheng, Tianbao</creatorcontrib><creatorcontrib>Qu, Zhaoliang</creatorcontrib><creatorcontrib>Chen, Yanfei</creatorcontrib><creatorcontrib>Wang, Ruzhuan</creatorcontrib><creatorcontrib>Ai, Shigang</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mechanica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Daining</au><au>Li, Weiguo</au><au>Cheng, Tianbao</au><au>Qu, Zhaoliang</au><au>Chen, Yanfei</au><au>Wang, Ruzhuan</au><au>Ai, Shigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review on mechanics of ultra-high-temperature materials</atitle><jtitle>Acta mechanica Sinica</jtitle><stitle>Acta Mech. Sin</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>37</volume><issue>9</issue><spage>1347</spage><epage>1370</epage><pages>1347-1370</pages><issn>0567-7718</issn><eissn>1614-3116</eissn><abstract>Ultra-high-temperature materials have applications in aerospace and nuclear industry. They are usually subjected to complex thermal environments during service. The mechanical properties of materials in ultra-high-temperature environments have been attracted increasing attentions. However, the characterization and evaluation of ultra-high-temperature mechanical properties of materials are still challenging work. This article presents a review on the mechanical properties of materials at elevated temperatures. The experimental results and techniques on the ultra-high-temperature mechanical properties of materials are reviewed. The constitutive models of materials at elevated temperatures are discussed. The recent research progress on the quantitative theoretical characterization models for the temperature-dependent fracture strength of advanced ceramics and their composites is also given, and the emphasis is placed on the applications of the force-heat equivalence energy density principle. The thermal–mechanical-oxygen coupled computational mechanics of materials are discussed. Furthermore, the outlook and concluding remarks are highlighted.</abstract><cop>Beijing</cop><pub>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</pub><doi>10.1007/s10409-021-01146-3</doi><tpages>24</tpages><edition>English ed.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0567-7718
ispartof Acta mechanica Sinica, 2021-09, Vol.37 (9), p.1347-1370
issn 0567-7718
1614-3116
language eng
recordid cdi_proquest_journals_2612412583
source Springer Nature - Complete Springer Journals
subjects Aerospace industry
Classical and Continuum Physics
Computational Intelligence
Computational mechanics
Constitutive models
Engineering
Engineering Fluid Dynamics
Flux density
Fracture strength
High temperature environments
Invited Review
Material properties
Mathematical models
Mechanical properties
Temperature
Temperature dependence
Theoretical and Applied Mechanics
Thermal environments
title Review on mechanics of ultra-high-temperature materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20on%20mechanics%20of%20ultra-high-temperature%20materials&rft.jtitle=Acta%20mechanica%20Sinica&rft.au=Fang,%20Daining&rft.date=2021-09-01&rft.volume=37&rft.issue=9&rft.spage=1347&rft.epage=1370&rft.pages=1347-1370&rft.issn=0567-7718&rft.eissn=1614-3116&rft_id=info:doi/10.1007/s10409-021-01146-3&rft_dat=%3Cproquest_cross%3E2612412583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612412583&rft_id=info:pmid/&rfr_iscdi=true