Nonzero-sum stochastic impulse games with an application in competitive retail energy markets
We study a nonzero-sum stochastic differential game with both players adopting impulse controls, on a finite time horizon. The objective of each player is to maximize her total expected discounted profits. The resolution methodology relies on the connection between Nash equilibrium and the correspon...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Aïd, René Lamia Ben Ajmia Gaïgi, M'hamed Mnif, Mohamed |
description | We study a nonzero-sum stochastic differential game with both players adopting impulse controls, on a finite time horizon. The objective of each player is to maximize her total expected discounted profits. The resolution methodology relies on the connection between Nash equilibrium and the corresponding system of quasi-variational inequalities (QVIs in short). We prove, by means of the weak dynamic programming principle for the stochastic differential game, that the value function of each player is a constrained viscosity solution to the associated QVIs system in the class of linear growth functions. We also introduce a family of value functions converging to our value function of each player, and which is characterized as the unique constrained viscosity solutions of an approximation of our QVIs system. This convergence result is useful for numerical purpose. We apply a probabilistic numerical scheme which approximates the solution of the QVIs system to the case of the competition between two electricity retailers. We show how our model reproduces the qualitative behaviour of electricity retail competition. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2612224406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612224406</sourcerecordid><originalsourceid>FETCH-proquest_journals_26122244063</originalsourceid><addsrcrecordid>eNqNjLsKwkAQAA9BMKj_sGAdiJsY7UWxsrIVOcKqG3MPbzeKfr0WfoDVFDPMwGRYlvN8VSGOzFSkLYoC6yUuFmVmjvvg35RCLr0D0dBcrSg3wC72nRBcrCOBJ-sVrAcbY8eNVQ4e2EMTXCRl5QdBIrXcAXlKlxc4m26kMjHDs_1upj-OzWy7Oax3eUzh3pPoqQ198l91wnqOiFVV1OV_1QekzETL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612224406</pqid></control><display><type>article</type><title>Nonzero-sum stochastic impulse games with an application in competitive retail energy markets</title><source>Free E- Journals</source><creator>Aïd, René ; Lamia Ben Ajmia ; Gaïgi, M'hamed ; Mnif, Mohamed</creator><creatorcontrib>Aïd, René ; Lamia Ben Ajmia ; Gaïgi, M'hamed ; Mnif, Mohamed</creatorcontrib><description>We study a nonzero-sum stochastic differential game with both players adopting impulse controls, on a finite time horizon. The objective of each player is to maximize her total expected discounted profits. The resolution methodology relies on the connection between Nash equilibrium and the corresponding system of quasi-variational inequalities (QVIs in short). We prove, by means of the weak dynamic programming principle for the stochastic differential game, that the value function of each player is a constrained viscosity solution to the associated QVIs system in the class of linear growth functions. We also introduce a family of value functions converging to our value function of each player, and which is characterized as the unique constrained viscosity solutions of an approximation of our QVIs system. This convergence result is useful for numerical purpose. We apply a probabilistic numerical scheme which approximates the solution of the QVIs system to the case of the competition between two electricity retailers. We show how our model reproduces the qualitative behaviour of electricity retail competition.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Competition ; Convergence ; Differential games ; Dynamic programming ; Electricity ; Game theory ; Viscosity</subject><ispartof>arXiv.org, 2021-12</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Aïd, René</creatorcontrib><creatorcontrib>Lamia Ben Ajmia</creatorcontrib><creatorcontrib>Gaïgi, M'hamed</creatorcontrib><creatorcontrib>Mnif, Mohamed</creatorcontrib><title>Nonzero-sum stochastic impulse games with an application in competitive retail energy markets</title><title>arXiv.org</title><description>We study a nonzero-sum stochastic differential game with both players adopting impulse controls, on a finite time horizon. The objective of each player is to maximize her total expected discounted profits. The resolution methodology relies on the connection between Nash equilibrium and the corresponding system of quasi-variational inequalities (QVIs in short). We prove, by means of the weak dynamic programming principle for the stochastic differential game, that the value function of each player is a constrained viscosity solution to the associated QVIs system in the class of linear growth functions. We also introduce a family of value functions converging to our value function of each player, and which is characterized as the unique constrained viscosity solutions of an approximation of our QVIs system. This convergence result is useful for numerical purpose. We apply a probabilistic numerical scheme which approximates the solution of the QVIs system to the case of the competition between two electricity retailers. We show how our model reproduces the qualitative behaviour of electricity retail competition.</description><subject>Competition</subject><subject>Convergence</subject><subject>Differential games</subject><subject>Dynamic programming</subject><subject>Electricity</subject><subject>Game theory</subject><subject>Viscosity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjLsKwkAQAA9BMKj_sGAdiJsY7UWxsrIVOcKqG3MPbzeKfr0WfoDVFDPMwGRYlvN8VSGOzFSkLYoC6yUuFmVmjvvg35RCLr0D0dBcrSg3wC72nRBcrCOBJ-sVrAcbY8eNVQ4e2EMTXCRl5QdBIrXcAXlKlxc4m26kMjHDs_1upj-OzWy7Oax3eUzh3pPoqQ198l91wnqOiFVV1OV_1QekzETL</recordid><startdate>20211219</startdate><enddate>20211219</enddate><creator>Aïd, René</creator><creator>Lamia Ben Ajmia</creator><creator>Gaïgi, M'hamed</creator><creator>Mnif, Mohamed</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211219</creationdate><title>Nonzero-sum stochastic impulse games with an application in competitive retail energy markets</title><author>Aïd, René ; Lamia Ben Ajmia ; Gaïgi, M'hamed ; Mnif, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26122244063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Competition</topic><topic>Convergence</topic><topic>Differential games</topic><topic>Dynamic programming</topic><topic>Electricity</topic><topic>Game theory</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Aïd, René</creatorcontrib><creatorcontrib>Lamia Ben Ajmia</creatorcontrib><creatorcontrib>Gaïgi, M'hamed</creatorcontrib><creatorcontrib>Mnif, Mohamed</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aïd, René</au><au>Lamia Ben Ajmia</au><au>Gaïgi, M'hamed</au><au>Mnif, Mohamed</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nonzero-sum stochastic impulse games with an application in competitive retail energy markets</atitle><jtitle>arXiv.org</jtitle><date>2021-12-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study a nonzero-sum stochastic differential game with both players adopting impulse controls, on a finite time horizon. The objective of each player is to maximize her total expected discounted profits. The resolution methodology relies on the connection between Nash equilibrium and the corresponding system of quasi-variational inequalities (QVIs in short). We prove, by means of the weak dynamic programming principle for the stochastic differential game, that the value function of each player is a constrained viscosity solution to the associated QVIs system in the class of linear growth functions. We also introduce a family of value functions converging to our value function of each player, and which is characterized as the unique constrained viscosity solutions of an approximation of our QVIs system. This convergence result is useful for numerical purpose. We apply a probabilistic numerical scheme which approximates the solution of the QVIs system to the case of the competition between two electricity retailers. We show how our model reproduces the qualitative behaviour of electricity retail competition.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2612224406 |
source | Free E- Journals |
subjects | Competition Convergence Differential games Dynamic programming Electricity Game theory Viscosity |
title | Nonzero-sum stochastic impulse games with an application in competitive retail energy markets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nonzero-sum%20stochastic%20impulse%20games%20with%20an%20application%20in%20competitive%20retail%20energy%20markets&rft.jtitle=arXiv.org&rft.au=A%C3%AFd,%20Ren%C3%A9&rft.date=2021-12-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2612224406%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612224406&rft_id=info:pmid/&rfr_iscdi=true |