Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors

Summary Induced sparsity in the factor loading matrix identifies the factor basis, while rotational identification is obtained ex post by clustering methods closely related to machine learning. We extract meaningful economic concepts from a high‐dimensional data set, which together with observed var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 2021-11, Vol.36 (7), p.989-1012
Hauptverfasser: Beyeler, Simon, Kaufmann, Sylvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1012
container_issue 7
container_start_page 989
container_title Journal of applied econometrics (Chichester, England)
container_volume 36
creator Beyeler, Simon
Kaufmann, Sylvia
description Summary Induced sparsity in the factor loading matrix identifies the factor basis, while rotational identification is obtained ex post by clustering methods closely related to machine learning. We extract meaningful economic concepts from a high‐dimensional data set, which together with observed variables follow an unrestricted, reduced‐form VAR process. Including a comprehensive set of economic concepts allows reliable, fundamental structural analysis, even of the factor augmented VAR itself. We illustrate this by combining two structural identification methods to further analyze the model. To account for the shift in monetary policy instruments triggered by the Great Recession, we follow separate strategies to identify monetary policy shocks. Comparing ours to other parametric and non‐parametric factor estimates uncovers advantages of parametric sparse factor estimation in a high dimensional data environment. Besides meaningful factor extraction, we gain precision in the estimation of factor loadings.
doi_str_mv 10.1002/jae.2852
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2612203785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612203785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3262-ffd3d8c9f3eba16e2679fe317573de15fa89a992fd5ff249af9c17a73290cfe83</originalsourceid><addsrcrecordid>eNp10MtKw0AUBuBBFKxV8BECbtykzsXJZJal1BsFQbwsh3HmnJKSJnEmQbvrI7jwCfskprZbV2dxPv4ffkLOGR0xSvnVwsKI55IfkAGjWqeMS3lIBjTPRaq45MfkJMYFpTSjVA3I2xP4zoHfrL-xDssErWvrkNhuvoSqBZ-8jp8265_pV1PWRVtU8yQ2NsSiXSVtnRSVKzsPyRJs1f-wK_cB8ZQcoS0jnO3vkLzcTJ8nd-ns8fZ-Mp6lTvCMp4he-NxpFPBuWQY8UxpBMCWV8MAk2lxbrTl6icivtUXtmLJKcE0dQi6G5GKX24T6o4PYmkXdhaqvNDxjnFOhctmry51yoY4xAJomFEsbVoZRs53N9LOZ7Ww9TXf0syhh9a8zD-Ppn_8FduJxLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612203785</pqid></control><display><type>article</type><title>Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Beyeler, Simon ; Kaufmann, Sylvia</creator><creatorcontrib>Beyeler, Simon ; Kaufmann, Sylvia</creatorcontrib><description>Summary Induced sparsity in the factor loading matrix identifies the factor basis, while rotational identification is obtained ex post by clustering methods closely related to machine learning. We extract meaningful economic concepts from a high‐dimensional data set, which together with observed variables follow an unrestricted, reduced‐form VAR process. Including a comprehensive set of economic concepts allows reliable, fundamental structural analysis, even of the factor augmented VAR itself. We illustrate this by combining two structural identification methods to further analyze the model. To account for the shift in monetary policy instruments triggered by the Great Recession, we follow separate strategies to identify monetary policy shocks. Comparing ours to other parametric and non‐parametric factor estimates uncovers advantages of parametric sparse factor estimation in a high dimensional data environment. Besides meaningful factor extraction, we gain precision in the estimation of factor loadings.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.2852</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Augmentation ; Clustering ; Econometrics ; Economic analysis ; Extraction ; Form factors ; Identification methods ; Machine learning ; Monetary policy ; Sparsity ; Structural analysis</subject><ispartof>Journal of applied econometrics (Chichester, England), 2021-11, Vol.36 (7), p.989-1012</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3262-ffd3d8c9f3eba16e2679fe317573de15fa89a992fd5ff249af9c17a73290cfe83</citedby><cites>FETCH-LOGICAL-c3262-ffd3d8c9f3eba16e2679fe317573de15fa89a992fd5ff249af9c17a73290cfe83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjae.2852$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjae.2852$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Beyeler, Simon</creatorcontrib><creatorcontrib>Kaufmann, Sylvia</creatorcontrib><title>Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors</title><title>Journal of applied econometrics (Chichester, England)</title><description>Summary Induced sparsity in the factor loading matrix identifies the factor basis, while rotational identification is obtained ex post by clustering methods closely related to machine learning. We extract meaningful economic concepts from a high‐dimensional data set, which together with observed variables follow an unrestricted, reduced‐form VAR process. Including a comprehensive set of economic concepts allows reliable, fundamental structural analysis, even of the factor augmented VAR itself. We illustrate this by combining two structural identification methods to further analyze the model. To account for the shift in monetary policy instruments triggered by the Great Recession, we follow separate strategies to identify monetary policy shocks. Comparing ours to other parametric and non‐parametric factor estimates uncovers advantages of parametric sparse factor estimation in a high dimensional data environment. Besides meaningful factor extraction, we gain precision in the estimation of factor loadings.</description><subject>Augmentation</subject><subject>Clustering</subject><subject>Econometrics</subject><subject>Economic analysis</subject><subject>Extraction</subject><subject>Form factors</subject><subject>Identification methods</subject><subject>Machine learning</subject><subject>Monetary policy</subject><subject>Sparsity</subject><subject>Structural analysis</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10MtKw0AUBuBBFKxV8BECbtykzsXJZJal1BsFQbwsh3HmnJKSJnEmQbvrI7jwCfskprZbV2dxPv4ffkLOGR0xSvnVwsKI55IfkAGjWqeMS3lIBjTPRaq45MfkJMYFpTSjVA3I2xP4zoHfrL-xDssErWvrkNhuvoSqBZ-8jp8265_pV1PWRVtU8yQ2NsSiXSVtnRSVKzsPyRJs1f-wK_cB8ZQcoS0jnO3vkLzcTJ8nd-ns8fZ-Mp6lTvCMp4he-NxpFPBuWQY8UxpBMCWV8MAk2lxbrTl6icivtUXtmLJKcE0dQi6G5GKX24T6o4PYmkXdhaqvNDxjnFOhctmry51yoY4xAJomFEsbVoZRs53N9LOZ7Ww9TXf0syhh9a8zD-Ppn_8FduJxLQ</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Beyeler, Simon</creator><creator>Kaufmann, Sylvia</creator><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>202111</creationdate><title>Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors</title><author>Beyeler, Simon ; Kaufmann, Sylvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3262-ffd3d8c9f3eba16e2679fe317573de15fa89a992fd5ff249af9c17a73290cfe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Augmentation</topic><topic>Clustering</topic><topic>Econometrics</topic><topic>Economic analysis</topic><topic>Extraction</topic><topic>Form factors</topic><topic>Identification methods</topic><topic>Machine learning</topic><topic>Monetary policy</topic><topic>Sparsity</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beyeler, Simon</creatorcontrib><creatorcontrib>Kaufmann, Sylvia</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beyeler, Simon</au><au>Kaufmann, Sylvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2021-11</date><risdate>2021</risdate><volume>36</volume><issue>7</issue><spage>989</spage><epage>1012</epage><pages>989-1012</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>Summary Induced sparsity in the factor loading matrix identifies the factor basis, while rotational identification is obtained ex post by clustering methods closely related to machine learning. We extract meaningful economic concepts from a high‐dimensional data set, which together with observed variables follow an unrestricted, reduced‐form VAR process. Including a comprehensive set of economic concepts allows reliable, fundamental structural analysis, even of the factor augmented VAR itself. We illustrate this by combining two structural identification methods to further analyze the model. To account for the shift in monetary policy instruments triggered by the Great Recession, we follow separate strategies to identify monetary policy shocks. Comparing ours to other parametric and non‐parametric factor estimates uncovers advantages of parametric sparse factor estimation in a high dimensional data environment. Besides meaningful factor extraction, we gain precision in the estimation of factor loadings.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/jae.2852</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2021-11, Vol.36 (7), p.989-1012
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_journals_2612203785
source Wiley Online Library Journals Frontfile Complete
subjects Augmentation
Clustering
Econometrics
Economic analysis
Extraction
Form factors
Identification methods
Machine learning
Monetary policy
Sparsity
Structural analysis
title Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%E2%80%90form%20factor%20augmented%20VAR%E2%80%94Exploiting%20sparsity%20to%20include%20meaningful%20factors&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Beyeler,%20Simon&rft.date=2021-11&rft.volume=36&rft.issue=7&rft.spage=989&rft.epage=1012&rft.pages=989-1012&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/10.1002/jae.2852&rft_dat=%3Cproquest_cross%3E2612203785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612203785&rft_id=info:pmid/&rfr_iscdi=true