High accuracy data-driven heliostat calibration and state prediction with pretrained deep neural networks

The efficiency of solar tower power plants depends strongly on the ability to reflect the sun light onto a defined point on the receiver. Due to the high demands on the heliostats to achieve high accuracy at low costs, a regular calibration is necessary to reduce the tracking error. In this paper a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2021-04, Vol.218, p.48-56
Hauptverfasser: Pargmann, Max, Maldonado Quinto, Daniel, Schwarzbözl, Peter, Pitz-Paal, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue
container_start_page 48
container_title Solar energy
container_volume 218
creator Pargmann, Max
Maldonado Quinto, Daniel
Schwarzbözl, Peter
Pitz-Paal, Robert
description The efficiency of solar tower power plants depends strongly on the ability to reflect the sun light onto a defined point on the receiver. Due to the high demands on the heliostats to achieve high accuracy at low costs, a regular calibration is necessary to reduce the tracking error. In this paper a new method for improving existing calibration methods using deep learning is presented. The results are validated by using calibration data recorded at the Solar Tower Jülich with the example of one heliostat. Through a combination of Self-Normalizing Neural Networks and transfer learning it is possible to benefit from the advantages of neural networks already with a training dataset of only 300 measuring points. With that a measured test accuracy of 0.42 mrad was achieved. This was approximately three times more accurate than the best result of the compared state-of-the-art regression algorithm used in Jölich. Furthermore we give recommendations on the structure of the dataset and the neural network (NN) pretraining necessary for these results.
doi_str_mv 10.1016/j.solener.2021.01.046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2611918220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X21000621</els_id><sourcerecordid>2611918220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-57e68679d64ad36f488565b13f42cdfd0263e99dfd6b63c2013e3a7a8487f74d3</originalsourceid><addsrcrecordid>eNqNkE2LFDEQhoMoOK7-BKHBo_RY-egkfRIZXFdY8KLgLWSSaidjm4xJZof996Z3Bq-7UFAfvE9V8RLylsKaApUf9uuSZoyY1wwYXUMLIZ-RFRWK9pQN6jlZAXDdw8h-viSvStkDUEW1WpFwE37tOuvcMVt333lbbe9zuMPY7XAOqVRbO2fnsM22hhQ7G323DLE7ZPTBPQxPoe6WvmYbIvrOIx66iG3n3FI9pfy7vCYvJjsXfHPJV-TH9efvm5v-9tuXr5tPt73jWtR-UCi1VKOXwnouJ6H1IIct5ZNgzk8emOQ4jq2SW8kdA8qRW2W10GpSwvMr8u6895DT3yOWavbpmGM7aZikdKSaMWiq4axyOZWScTKHHP7YfG8omMVVszcXV83iqoEWQjZOn7kTbtNUXMDo8D8LAJKr5UarYNiE-mDaJh1jbej7p6NN_fGsxubVXWhvXAgfMrpqfAqPvPoPHkGloQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611918220</pqid></control><display><type>article</type><title>High accuracy data-driven heliostat calibration and state prediction with pretrained deep neural networks</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Pargmann, Max ; Maldonado Quinto, Daniel ; Schwarzbözl, Peter ; Pitz-Paal, Robert</creator><creatorcontrib>Pargmann, Max ; Maldonado Quinto, Daniel ; Schwarzbözl, Peter ; Pitz-Paal, Robert</creatorcontrib><description>The efficiency of solar tower power plants depends strongly on the ability to reflect the sun light onto a defined point on the receiver. Due to the high demands on the heliostats to achieve high accuracy at low costs, a regular calibration is necessary to reduce the tracking error. In this paper a new method for improving existing calibration methods using deep learning is presented. The results are validated by using calibration data recorded at the Solar Tower Jülich with the example of one heliostat. Through a combination of Self-Normalizing Neural Networks and transfer learning it is possible to benefit from the advantages of neural networks already with a training dataset of only 300 measuring points. With that a measured test accuracy of 0.42 mrad was achieved. This was approximately three times more accurate than the best result of the compared state-of-the-art regression algorithm used in Jölich. Furthermore we give recommendations on the structure of the dataset and the neural network (NN) pretraining necessary for these results.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2021.01.046</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Calibration ; Concentrating solar power ; Datasets ; Deep learning ; Energy &amp; Fuels ; Heliostat aiming ; Heliostats ; Machine learning ; Neural networks ; Normalizing ; Power plants ; Science &amp; Technology ; Solar energy ; Solar tower power plant ; Technology ; Tracking errors ; Transfer learning</subject><ispartof>Solar energy, 2021-04, Vol.218, p.48-56</ispartof><rights>2021 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Apr 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000637191800005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c384t-57e68679d64ad36f488565b13f42cdfd0263e99dfd6b63c2013e3a7a8487f74d3</citedby><cites>FETCH-LOGICAL-c384t-57e68679d64ad36f488565b13f42cdfd0263e99dfd6b63c2013e3a7a8487f74d3</cites><orcidid>0000-0002-4705-6285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2021.01.046$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Pargmann, Max</creatorcontrib><creatorcontrib>Maldonado Quinto, Daniel</creatorcontrib><creatorcontrib>Schwarzbözl, Peter</creatorcontrib><creatorcontrib>Pitz-Paal, Robert</creatorcontrib><title>High accuracy data-driven heliostat calibration and state prediction with pretrained deep neural networks</title><title>Solar energy</title><addtitle>SOL ENERGY</addtitle><description>The efficiency of solar tower power plants depends strongly on the ability to reflect the sun light onto a defined point on the receiver. Due to the high demands on the heliostats to achieve high accuracy at low costs, a regular calibration is necessary to reduce the tracking error. In this paper a new method for improving existing calibration methods using deep learning is presented. The results are validated by using calibration data recorded at the Solar Tower Jülich with the example of one heliostat. Through a combination of Self-Normalizing Neural Networks and transfer learning it is possible to benefit from the advantages of neural networks already with a training dataset of only 300 measuring points. With that a measured test accuracy of 0.42 mrad was achieved. This was approximately three times more accurate than the best result of the compared state-of-the-art regression algorithm used in Jölich. Furthermore we give recommendations on the structure of the dataset and the neural network (NN) pretraining necessary for these results.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Calibration</subject><subject>Concentrating solar power</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Energy &amp; Fuels</subject><subject>Heliostat aiming</subject><subject>Heliostats</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Normalizing</subject><subject>Power plants</subject><subject>Science &amp; Technology</subject><subject>Solar energy</subject><subject>Solar tower power plant</subject><subject>Technology</subject><subject>Tracking errors</subject><subject>Transfer learning</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE2LFDEQhoMoOK7-BKHBo_RY-egkfRIZXFdY8KLgLWSSaidjm4xJZof996Z3Bq-7UFAfvE9V8RLylsKaApUf9uuSZoyY1wwYXUMLIZ-RFRWK9pQN6jlZAXDdw8h-viSvStkDUEW1WpFwE37tOuvcMVt333lbbe9zuMPY7XAOqVRbO2fnsM22hhQ7G323DLE7ZPTBPQxPoe6WvmYbIvrOIx66iG3n3FI9pfy7vCYvJjsXfHPJV-TH9efvm5v-9tuXr5tPt73jWtR-UCi1VKOXwnouJ6H1IIct5ZNgzk8emOQ4jq2SW8kdA8qRW2W10GpSwvMr8u6895DT3yOWavbpmGM7aZikdKSaMWiq4axyOZWScTKHHP7YfG8omMVVszcXV83iqoEWQjZOn7kTbtNUXMDo8D8LAJKr5UarYNiE-mDaJh1jbej7p6NN_fGsxubVXWhvXAgfMrpqfAqPvPoPHkGloQ</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Pargmann, Max</creator><creator>Maldonado Quinto, Daniel</creator><creator>Schwarzbözl, Peter</creator><creator>Pitz-Paal, Robert</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4705-6285</orcidid></search><sort><creationdate>202104</creationdate><title>High accuracy data-driven heliostat calibration and state prediction with pretrained deep neural networks</title><author>Pargmann, Max ; Maldonado Quinto, Daniel ; Schwarzbözl, Peter ; Pitz-Paal, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-57e68679d64ad36f488565b13f42cdfd0263e99dfd6b63c2013e3a7a8487f74d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Calibration</topic><topic>Concentrating solar power</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Energy &amp; Fuels</topic><topic>Heliostat aiming</topic><topic>Heliostats</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Normalizing</topic><topic>Power plants</topic><topic>Science &amp; Technology</topic><topic>Solar energy</topic><topic>Solar tower power plant</topic><topic>Technology</topic><topic>Tracking errors</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pargmann, Max</creatorcontrib><creatorcontrib>Maldonado Quinto, Daniel</creatorcontrib><creatorcontrib>Schwarzbözl, Peter</creatorcontrib><creatorcontrib>Pitz-Paal, Robert</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pargmann, Max</au><au>Maldonado Quinto, Daniel</au><au>Schwarzbözl, Peter</au><au>Pitz-Paal, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High accuracy data-driven heliostat calibration and state prediction with pretrained deep neural networks</atitle><jtitle>Solar energy</jtitle><stitle>SOL ENERGY</stitle><date>2021-04</date><risdate>2021</risdate><volume>218</volume><spage>48</spage><epage>56</epage><pages>48-56</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>The efficiency of solar tower power plants depends strongly on the ability to reflect the sun light onto a defined point on the receiver. Due to the high demands on the heliostats to achieve high accuracy at low costs, a regular calibration is necessary to reduce the tracking error. In this paper a new method for improving existing calibration methods using deep learning is presented. The results are validated by using calibration data recorded at the Solar Tower Jülich with the example of one heliostat. Through a combination of Self-Normalizing Neural Networks and transfer learning it is possible to benefit from the advantages of neural networks already with a training dataset of only 300 measuring points. With that a measured test accuracy of 0.42 mrad was achieved. This was approximately three times more accurate than the best result of the compared state-of-the-art regression algorithm used in Jölich. Furthermore we give recommendations on the structure of the dataset and the neural network (NN) pretraining necessary for these results.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2021.01.046</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4705-6285</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2021-04, Vol.218, p.48-56
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_2611918220
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Calibration
Concentrating solar power
Datasets
Deep learning
Energy & Fuels
Heliostat aiming
Heliostats
Machine learning
Neural networks
Normalizing
Power plants
Science & Technology
Solar energy
Solar tower power plant
Technology
Tracking errors
Transfer learning
title High accuracy data-driven heliostat calibration and state prediction with pretrained deep neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20accuracy%20data-driven%20heliostat%20calibration%20and%20state%20prediction%20with%20pretrained%20deep%20neural%20networks&rft.jtitle=Solar%20energy&rft.au=Pargmann,%20Max&rft.date=2021-04&rft.volume=218&rft.spage=48&rft.epage=56&rft.pages=48-56&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2021.01.046&rft_dat=%3Cproquest_cross%3E2611918220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611918220&rft_id=info:pmid/&rft_els_id=S0038092X21000621&rfr_iscdi=true