Chemoheteroepitaxy of 3C‐SiC(111) on Si(111): Influence of Predeposited Ge on Structure and Composition
Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, ellipsometry, reflection high energy diffraction and transmission electron microscopy are used to gain inside into the effect of Ge on the formation of ultrathin 3C‐SiC layers on Si(111) substrates. Accompanying the experime...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2021-12, Vol.218 (24), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 218 |
creator | Zgheib, Charbel Lubov, Maxim N. Kulikov, Dmitri V. Kharlamov, Vladimir S. Thiele, Sebastian Morales, Francisco M. Romanus, Henry Rahbany, Nancy Beainy, Georges Stauden, Thomas Pezoldt, Jörg |
description | Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, ellipsometry, reflection high energy diffraction and transmission electron microscopy are used to gain inside into the effect of Ge on the formation of ultrathin 3C‐SiC layers on Si(111) substrates. Accompanying the experimental investigations with simulations it is found that the ultrathin single crystalline 3C‐SiC layer is formed on top of a gradient Si1–x–yGexCy buffer layer due to a complex alloying and alloy decomposition processes promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress at very early growth stages as well as the interface properties of the 3C‐SiC/Si heterostructure. Useful yields of secondary ions of Ge in Si matrix and Si dimer are estimated.
Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, reflection high energy electron diffraction, ellipsometry, and transmission electron microscopy investigations are used to gain inside into the effect of Ge on the chemoheteroepitaxy of 3C‐SiC on Si(111). Experimental investigations and simulations demonstrate the formation of a ultrathin single crystalline 3C‐SiC layer on a gradient Si1–x–yGexCy buffer layer due to an alloying and alloy decomposition promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress and the interface at very early growth stages. |
doi_str_mv | 10.1002/pssa.202100399 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2611901163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611901163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-3fe49de302cd5719b1475bd051272408aba7680504293ca1dd934c235dcb09973</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxYMoWKtXzwte9JA6s5s_XW8StBYKFqLnkGQndEubjbsJ2psfwc_oJzFtpR49zRvm9-bB87xLhBEC8NvGuXzEgfeLkPLIG-A44n4kUB4fNMCpd-bcEiAIgxgHnk4WtDYLaskaanSbf2yYqZhIvj-_Up1cI-INMzVL9U7esWldrTqqS9pic0uKGuN0S4pNaAe2tivbzhLLa8USs96dtanPvZMqXzm6-J1D7_Xx4SV58mfPk2lyP_NLEcbSFxUFUpEAXqowRllgEIeFghB5zAMY50UeR2MIIeBSlDkqJUVQchGqsgApYzH0rvZ_G2veOnJttjSdrfvIjEeIEhAj0VOjPVVa45ylKmusXud2kyFk2zqzbZ3Zoc7eIPeGd72izT90Nk_T-z_vD3n2d88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611901163</pqid></control><display><type>article</type><title>Chemoheteroepitaxy of 3C‐SiC(111) on Si(111): Influence of Predeposited Ge on Structure and Composition</title><source>Access via Wiley Online Library</source><creator>Zgheib, Charbel ; Lubov, Maxim N. ; Kulikov, Dmitri V. ; Kharlamov, Vladimir S. ; Thiele, Sebastian ; Morales, Francisco M. ; Romanus, Henry ; Rahbany, Nancy ; Beainy, Georges ; Stauden, Thomas ; Pezoldt, Jörg</creator><creatorcontrib>Zgheib, Charbel ; Lubov, Maxim N. ; Kulikov, Dmitri V. ; Kharlamov, Vladimir S. ; Thiele, Sebastian ; Morales, Francisco M. ; Romanus, Henry ; Rahbany, Nancy ; Beainy, Georges ; Stauden, Thomas ; Pezoldt, Jörg</creatorcontrib><description>Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, ellipsometry, reflection high energy diffraction and transmission electron microscopy are used to gain inside into the effect of Ge on the formation of ultrathin 3C‐SiC layers on Si(111) substrates. Accompanying the experimental investigations with simulations it is found that the ultrathin single crystalline 3C‐SiC layer is formed on top of a gradient Si1–x–yGexCy buffer layer due to a complex alloying and alloy decomposition processes promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress at very early growth stages as well as the interface properties of the 3C‐SiC/Si heterostructure. Useful yields of secondary ions of Ge in Si matrix and Si dimer are estimated.
Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, reflection high energy electron diffraction, ellipsometry, and transmission electron microscopy investigations are used to gain inside into the effect of Ge on the chemoheteroepitaxy of 3C‐SiC on Si(111). Experimental investigations and simulations demonstrate the formation of a ultrathin single crystalline 3C‐SiC layer on a gradient Si1–x–yGexCy buffer layer due to an alloying and alloy decomposition promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress and the interface at very early growth stages.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202100399</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Buffer layers ; cubic silicon carbide ; diffusion ; Dimers ; Ellipsometry ; Fourier transformed infrared spectroscopy ; Germanium ; heteroepitaxy ; Heterostructures ; Infrared reflection ; Infrared spectroscopy ; Interdiffusion ; Interfacial properties ; molecular beam epitaxy ; Nucleation ; phase transition ; Residual stress ; Secondary ion mass spectroscopy ; Silicon substrates ; Spectrum analysis</subject><ispartof>Physica status solidi. A, Applications and materials science, 2021-12, Vol.218 (24), p.n/a</ispartof><rights>2021 The Authors. physica status solidi (a) applications and materials science published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-3fe49de302cd5719b1475bd051272408aba7680504293ca1dd934c235dcb09973</citedby><cites>FETCH-LOGICAL-c3579-3fe49de302cd5719b1475bd051272408aba7680504293ca1dd934c235dcb09973</cites><orcidid>0000-0002-2611-7720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202100399$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202100399$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zgheib, Charbel</creatorcontrib><creatorcontrib>Lubov, Maxim N.</creatorcontrib><creatorcontrib>Kulikov, Dmitri V.</creatorcontrib><creatorcontrib>Kharlamov, Vladimir S.</creatorcontrib><creatorcontrib>Thiele, Sebastian</creatorcontrib><creatorcontrib>Morales, Francisco M.</creatorcontrib><creatorcontrib>Romanus, Henry</creatorcontrib><creatorcontrib>Rahbany, Nancy</creatorcontrib><creatorcontrib>Beainy, Georges</creatorcontrib><creatorcontrib>Stauden, Thomas</creatorcontrib><creatorcontrib>Pezoldt, Jörg</creatorcontrib><title>Chemoheteroepitaxy of 3C‐SiC(111) on Si(111): Influence of Predeposited Ge on Structure and Composition</title><title>Physica status solidi. A, Applications and materials science</title><description>Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, ellipsometry, reflection high energy diffraction and transmission electron microscopy are used to gain inside into the effect of Ge on the formation of ultrathin 3C‐SiC layers on Si(111) substrates. Accompanying the experimental investigations with simulations it is found that the ultrathin single crystalline 3C‐SiC layer is formed on top of a gradient Si1–x–yGexCy buffer layer due to a complex alloying and alloy decomposition processes promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress at very early growth stages as well as the interface properties of the 3C‐SiC/Si heterostructure. Useful yields of secondary ions of Ge in Si matrix and Si dimer are estimated.
Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, reflection high energy electron diffraction, ellipsometry, and transmission electron microscopy investigations are used to gain inside into the effect of Ge on the chemoheteroepitaxy of 3C‐SiC on Si(111). Experimental investigations and simulations demonstrate the formation of a ultrathin single crystalline 3C‐SiC layer on a gradient Si1–x–yGexCy buffer layer due to an alloying and alloy decomposition promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress and the interface at very early growth stages.</description><subject>Buffer layers</subject><subject>cubic silicon carbide</subject><subject>diffusion</subject><subject>Dimers</subject><subject>Ellipsometry</subject><subject>Fourier transformed infrared spectroscopy</subject><subject>Germanium</subject><subject>heteroepitaxy</subject><subject>Heterostructures</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>Interdiffusion</subject><subject>Interfacial properties</subject><subject>molecular beam epitaxy</subject><subject>Nucleation</subject><subject>phase transition</subject><subject>Residual stress</subject><subject>Secondary ion mass spectroscopy</subject><subject>Silicon substrates</subject><subject>Spectrum analysis</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE9Lw0AQxYMoWKtXzwte9JA6s5s_XW8StBYKFqLnkGQndEubjbsJ2psfwc_oJzFtpR49zRvm9-bB87xLhBEC8NvGuXzEgfeLkPLIG-A44n4kUB4fNMCpd-bcEiAIgxgHnk4WtDYLaskaanSbf2yYqZhIvj-_Up1cI-INMzVL9U7esWldrTqqS9pic0uKGuN0S4pNaAe2tivbzhLLa8USs96dtanPvZMqXzm6-J1D7_Xx4SV58mfPk2lyP_NLEcbSFxUFUpEAXqowRllgEIeFghB5zAMY50UeR2MIIeBSlDkqJUVQchGqsgApYzH0rvZ_G2veOnJttjSdrfvIjEeIEhAj0VOjPVVa45ylKmusXud2kyFk2zqzbZ3Zoc7eIPeGd72izT90Nk_T-z_vD3n2d88</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Zgheib, Charbel</creator><creator>Lubov, Maxim N.</creator><creator>Kulikov, Dmitri V.</creator><creator>Kharlamov, Vladimir S.</creator><creator>Thiele, Sebastian</creator><creator>Morales, Francisco M.</creator><creator>Romanus, Henry</creator><creator>Rahbany, Nancy</creator><creator>Beainy, Georges</creator><creator>Stauden, Thomas</creator><creator>Pezoldt, Jörg</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2611-7720</orcidid></search><sort><creationdate>202112</creationdate><title>Chemoheteroepitaxy of 3C‐SiC(111) on Si(111): Influence of Predeposited Ge on Structure and Composition</title><author>Zgheib, Charbel ; Lubov, Maxim N. ; Kulikov, Dmitri V. ; Kharlamov, Vladimir S. ; Thiele, Sebastian ; Morales, Francisco M. ; Romanus, Henry ; Rahbany, Nancy ; Beainy, Georges ; Stauden, Thomas ; Pezoldt, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-3fe49de302cd5719b1475bd051272408aba7680504293ca1dd934c235dcb09973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Buffer layers</topic><topic>cubic silicon carbide</topic><topic>diffusion</topic><topic>Dimers</topic><topic>Ellipsometry</topic><topic>Fourier transformed infrared spectroscopy</topic><topic>Germanium</topic><topic>heteroepitaxy</topic><topic>Heterostructures</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>Interdiffusion</topic><topic>Interfacial properties</topic><topic>molecular beam epitaxy</topic><topic>Nucleation</topic><topic>phase transition</topic><topic>Residual stress</topic><topic>Secondary ion mass spectroscopy</topic><topic>Silicon substrates</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zgheib, Charbel</creatorcontrib><creatorcontrib>Lubov, Maxim N.</creatorcontrib><creatorcontrib>Kulikov, Dmitri V.</creatorcontrib><creatorcontrib>Kharlamov, Vladimir S.</creatorcontrib><creatorcontrib>Thiele, Sebastian</creatorcontrib><creatorcontrib>Morales, Francisco M.</creatorcontrib><creatorcontrib>Romanus, Henry</creatorcontrib><creatorcontrib>Rahbany, Nancy</creatorcontrib><creatorcontrib>Beainy, Georges</creatorcontrib><creatorcontrib>Stauden, Thomas</creatorcontrib><creatorcontrib>Pezoldt, Jörg</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zgheib, Charbel</au><au>Lubov, Maxim N.</au><au>Kulikov, Dmitri V.</au><au>Kharlamov, Vladimir S.</au><au>Thiele, Sebastian</au><au>Morales, Francisco M.</au><au>Romanus, Henry</au><au>Rahbany, Nancy</au><au>Beainy, Georges</au><au>Stauden, Thomas</au><au>Pezoldt, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemoheteroepitaxy of 3C‐SiC(111) on Si(111): Influence of Predeposited Ge on Structure and Composition</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2021-12</date><risdate>2021</risdate><volume>218</volume><issue>24</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, ellipsometry, reflection high energy diffraction and transmission electron microscopy are used to gain inside into the effect of Ge on the formation of ultrathin 3C‐SiC layers on Si(111) substrates. Accompanying the experimental investigations with simulations it is found that the ultrathin single crystalline 3C‐SiC layer is formed on top of a gradient Si1–x–yGexCy buffer layer due to a complex alloying and alloy decomposition processes promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress at very early growth stages as well as the interface properties of the 3C‐SiC/Si heterostructure. Useful yields of secondary ions of Ge in Si matrix and Si dimer are estimated.
Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, reflection high energy electron diffraction, ellipsometry, and transmission electron microscopy investigations are used to gain inside into the effect of Ge on the chemoheteroepitaxy of 3C‐SiC on Si(111). Experimental investigations and simulations demonstrate the formation of a ultrathin single crystalline 3C‐SiC layer on a gradient Si1–x–yGexCy buffer layer due to an alloying and alloy decomposition promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress and the interface at very early growth stages.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202100399</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2611-7720</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2021-12, Vol.218 (24), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2611901163 |
source | Access via Wiley Online Library |
subjects | Buffer layers cubic silicon carbide diffusion Dimers Ellipsometry Fourier transformed infrared spectroscopy Germanium heteroepitaxy Heterostructures Infrared reflection Infrared spectroscopy Interdiffusion Interfacial properties molecular beam epitaxy Nucleation phase transition Residual stress Secondary ion mass spectroscopy Silicon substrates Spectrum analysis |
title | Chemoheteroepitaxy of 3C‐SiC(111) on Si(111): Influence of Predeposited Ge on Structure and Composition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemoheteroepitaxy%20of%203C%E2%80%90SiC(111)%20on%20Si(111):%20Influence%20of%20Predeposited%20Ge%20on%20Structure%20and%20Composition&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Zgheib,%20Charbel&rft.date=2021-12&rft.volume=218&rft.issue=24&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202100399&rft_dat=%3Cproquest_cross%3E2611901163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611901163&rft_id=info:pmid/&rfr_iscdi=true |