Chemoheteroepitaxy of 3C‐SiC(111) on Si(111): Influence of Predeposited Ge on Structure and Composition

Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, ellipsometry, reflection high energy diffraction and transmission electron microscopy are used to gain inside into the effect of Ge on the formation of ultrathin 3C‐SiC layers on Si(111) substrates. Accompanying the experime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2021-12, Vol.218 (24), p.n/a
Hauptverfasser: Zgheib, Charbel, Lubov, Maxim N., Kulikov, Dmitri V., Kharlamov, Vladimir S., Thiele, Sebastian, Morales, Francisco M., Romanus, Henry, Rahbany, Nancy, Beainy, Georges, Stauden, Thomas, Pezoldt, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 218
creator Zgheib, Charbel
Lubov, Maxim N.
Kulikov, Dmitri V.
Kharlamov, Vladimir S.
Thiele, Sebastian
Morales, Francisco M.
Romanus, Henry
Rahbany, Nancy
Beainy, Georges
Stauden, Thomas
Pezoldt, Jörg
description Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, ellipsometry, reflection high energy diffraction and transmission electron microscopy are used to gain inside into the effect of Ge on the formation of ultrathin 3C‐SiC layers on Si(111) substrates. Accompanying the experimental investigations with simulations it is found that the ultrathin single crystalline 3C‐SiC layer is formed on top of a gradient Si1–x–yGexCy buffer layer due to a complex alloying and alloy decomposition processes promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress at very early growth stages as well as the interface properties of the 3C‐SiC/Si heterostructure. Useful yields of secondary ions of Ge in Si matrix and Si dimer are estimated. Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, reflection high energy electron diffraction, ellipsometry, and transmission electron microscopy investigations are used to gain inside into the effect of Ge on the chemoheteroepitaxy of 3C‐SiC on Si(111). Experimental investigations and simulations demonstrate the formation of a ultrathin single crystalline 3C‐SiC layer on a gradient Si1–x–yGexCy buffer layer due to an alloying and alloy decomposition promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress and the interface at very early growth stages.
doi_str_mv 10.1002/pssa.202100399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2611901163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611901163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-3fe49de302cd5719b1475bd051272408aba7680504293ca1dd934c235dcb09973</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxYMoWKtXzwte9JA6s5s_XW8StBYKFqLnkGQndEubjbsJ2psfwc_oJzFtpR49zRvm9-bB87xLhBEC8NvGuXzEgfeLkPLIG-A44n4kUB4fNMCpd-bcEiAIgxgHnk4WtDYLaskaanSbf2yYqZhIvj-_Up1cI-INMzVL9U7esWldrTqqS9pic0uKGuN0S4pNaAe2tivbzhLLa8USs96dtanPvZMqXzm6-J1D7_Xx4SV58mfPk2lyP_NLEcbSFxUFUpEAXqowRllgEIeFghB5zAMY50UeR2MIIeBSlDkqJUVQchGqsgApYzH0rvZ_G2veOnJttjSdrfvIjEeIEhAj0VOjPVVa45ylKmusXud2kyFk2zqzbZ3Zoc7eIPeGd72izT90Nk_T-z_vD3n2d88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611901163</pqid></control><display><type>article</type><title>Chemoheteroepitaxy of 3C‐SiC(111) on Si(111): Influence of Predeposited Ge on Structure and Composition</title><source>Access via Wiley Online Library</source><creator>Zgheib, Charbel ; Lubov, Maxim N. ; Kulikov, Dmitri V. ; Kharlamov, Vladimir S. ; Thiele, Sebastian ; Morales, Francisco M. ; Romanus, Henry ; Rahbany, Nancy ; Beainy, Georges ; Stauden, Thomas ; Pezoldt, Jörg</creator><creatorcontrib>Zgheib, Charbel ; Lubov, Maxim N. ; Kulikov, Dmitri V. ; Kharlamov, Vladimir S. ; Thiele, Sebastian ; Morales, Francisco M. ; Romanus, Henry ; Rahbany, Nancy ; Beainy, Georges ; Stauden, Thomas ; Pezoldt, Jörg</creatorcontrib><description>Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, ellipsometry, reflection high energy diffraction and transmission electron microscopy are used to gain inside into the effect of Ge on the formation of ultrathin 3C‐SiC layers on Si(111) substrates. Accompanying the experimental investigations with simulations it is found that the ultrathin single crystalline 3C‐SiC layer is formed on top of a gradient Si1–x–yGexCy buffer layer due to a complex alloying and alloy decomposition processes promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress at very early growth stages as well as the interface properties of the 3C‐SiC/Si heterostructure. Useful yields of secondary ions of Ge in Si matrix and Si dimer are estimated. Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, reflection high energy electron diffraction, ellipsometry, and transmission electron microscopy investigations are used to gain inside into the effect of Ge on the chemoheteroepitaxy of 3C‐SiC on Si(111). Experimental investigations and simulations demonstrate the formation of a ultrathin single crystalline 3C‐SiC layer on a gradient Si1–x–yGexCy buffer layer due to an alloying and alloy decomposition promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress and the interface at very early growth stages.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202100399</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Buffer layers ; cubic silicon carbide ; diffusion ; Dimers ; Ellipsometry ; Fourier transformed infrared spectroscopy ; Germanium ; heteroepitaxy ; Heterostructures ; Infrared reflection ; Infrared spectroscopy ; Interdiffusion ; Interfacial properties ; molecular beam epitaxy ; Nucleation ; phase transition ; Residual stress ; Secondary ion mass spectroscopy ; Silicon substrates ; Spectrum analysis</subject><ispartof>Physica status solidi. A, Applications and materials science, 2021-12, Vol.218 (24), p.n/a</ispartof><rights>2021 The Authors. physica status solidi (a) applications and materials science published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-3fe49de302cd5719b1475bd051272408aba7680504293ca1dd934c235dcb09973</citedby><cites>FETCH-LOGICAL-c3579-3fe49de302cd5719b1475bd051272408aba7680504293ca1dd934c235dcb09973</cites><orcidid>0000-0002-2611-7720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202100399$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202100399$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zgheib, Charbel</creatorcontrib><creatorcontrib>Lubov, Maxim N.</creatorcontrib><creatorcontrib>Kulikov, Dmitri V.</creatorcontrib><creatorcontrib>Kharlamov, Vladimir S.</creatorcontrib><creatorcontrib>Thiele, Sebastian</creatorcontrib><creatorcontrib>Morales, Francisco M.</creatorcontrib><creatorcontrib>Romanus, Henry</creatorcontrib><creatorcontrib>Rahbany, Nancy</creatorcontrib><creatorcontrib>Beainy, Georges</creatorcontrib><creatorcontrib>Stauden, Thomas</creatorcontrib><creatorcontrib>Pezoldt, Jörg</creatorcontrib><title>Chemoheteroepitaxy of 3C‐SiC(111) on Si(111): Influence of Predeposited Ge on Structure and Composition</title><title>Physica status solidi. A, Applications and materials science</title><description>Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, ellipsometry, reflection high energy diffraction and transmission electron microscopy are used to gain inside into the effect of Ge on the formation of ultrathin 3C‐SiC layers on Si(111) substrates. Accompanying the experimental investigations with simulations it is found that the ultrathin single crystalline 3C‐SiC layer is formed on top of a gradient Si1–x–yGexCy buffer layer due to a complex alloying and alloy decomposition processes promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress at very early growth stages as well as the interface properties of the 3C‐SiC/Si heterostructure. Useful yields of secondary ions of Ge in Si matrix and Si dimer are estimated. Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, reflection high energy electron diffraction, ellipsometry, and transmission electron microscopy investigations are used to gain inside into the effect of Ge on the chemoheteroepitaxy of 3C‐SiC on Si(111). Experimental investigations and simulations demonstrate the formation of a ultrathin single crystalline 3C‐SiC layer on a gradient Si1–x–yGexCy buffer layer due to an alloying and alloy decomposition promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress and the interface at very early growth stages.</description><subject>Buffer layers</subject><subject>cubic silicon carbide</subject><subject>diffusion</subject><subject>Dimers</subject><subject>Ellipsometry</subject><subject>Fourier transformed infrared spectroscopy</subject><subject>Germanium</subject><subject>heteroepitaxy</subject><subject>Heterostructures</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>Interdiffusion</subject><subject>Interfacial properties</subject><subject>molecular beam epitaxy</subject><subject>Nucleation</subject><subject>phase transition</subject><subject>Residual stress</subject><subject>Secondary ion mass spectroscopy</subject><subject>Silicon substrates</subject><subject>Spectrum analysis</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE9Lw0AQxYMoWKtXzwte9JA6s5s_XW8StBYKFqLnkGQndEubjbsJ2psfwc_oJzFtpR49zRvm9-bB87xLhBEC8NvGuXzEgfeLkPLIG-A44n4kUB4fNMCpd-bcEiAIgxgHnk4WtDYLaskaanSbf2yYqZhIvj-_Up1cI-INMzVL9U7esWldrTqqS9pic0uKGuN0S4pNaAe2tivbzhLLa8USs96dtanPvZMqXzm6-J1D7_Xx4SV58mfPk2lyP_NLEcbSFxUFUpEAXqowRllgEIeFghB5zAMY50UeR2MIIeBSlDkqJUVQchGqsgApYzH0rvZ_G2veOnJttjSdrfvIjEeIEhAj0VOjPVVa45ylKmusXud2kyFk2zqzbZ3Zoc7eIPeGd72izT90Nk_T-z_vD3n2d88</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Zgheib, Charbel</creator><creator>Lubov, Maxim N.</creator><creator>Kulikov, Dmitri V.</creator><creator>Kharlamov, Vladimir S.</creator><creator>Thiele, Sebastian</creator><creator>Morales, Francisco M.</creator><creator>Romanus, Henry</creator><creator>Rahbany, Nancy</creator><creator>Beainy, Georges</creator><creator>Stauden, Thomas</creator><creator>Pezoldt, Jörg</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2611-7720</orcidid></search><sort><creationdate>202112</creationdate><title>Chemoheteroepitaxy of 3C‐SiC(111) on Si(111): Influence of Predeposited Ge on Structure and Composition</title><author>Zgheib, Charbel ; Lubov, Maxim N. ; Kulikov, Dmitri V. ; Kharlamov, Vladimir S. ; Thiele, Sebastian ; Morales, Francisco M. ; Romanus, Henry ; Rahbany, Nancy ; Beainy, Georges ; Stauden, Thomas ; Pezoldt, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-3fe49de302cd5719b1475bd051272408aba7680504293ca1dd934c235dcb09973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Buffer layers</topic><topic>cubic silicon carbide</topic><topic>diffusion</topic><topic>Dimers</topic><topic>Ellipsometry</topic><topic>Fourier transformed infrared spectroscopy</topic><topic>Germanium</topic><topic>heteroepitaxy</topic><topic>Heterostructures</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>Interdiffusion</topic><topic>Interfacial properties</topic><topic>molecular beam epitaxy</topic><topic>Nucleation</topic><topic>phase transition</topic><topic>Residual stress</topic><topic>Secondary ion mass spectroscopy</topic><topic>Silicon substrates</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zgheib, Charbel</creatorcontrib><creatorcontrib>Lubov, Maxim N.</creatorcontrib><creatorcontrib>Kulikov, Dmitri V.</creatorcontrib><creatorcontrib>Kharlamov, Vladimir S.</creatorcontrib><creatorcontrib>Thiele, Sebastian</creatorcontrib><creatorcontrib>Morales, Francisco M.</creatorcontrib><creatorcontrib>Romanus, Henry</creatorcontrib><creatorcontrib>Rahbany, Nancy</creatorcontrib><creatorcontrib>Beainy, Georges</creatorcontrib><creatorcontrib>Stauden, Thomas</creatorcontrib><creatorcontrib>Pezoldt, Jörg</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zgheib, Charbel</au><au>Lubov, Maxim N.</au><au>Kulikov, Dmitri V.</au><au>Kharlamov, Vladimir S.</au><au>Thiele, Sebastian</au><au>Morales, Francisco M.</au><au>Romanus, Henry</au><au>Rahbany, Nancy</au><au>Beainy, Georges</au><au>Stauden, Thomas</au><au>Pezoldt, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemoheteroepitaxy of 3C‐SiC(111) on Si(111): Influence of Predeposited Ge on Structure and Composition</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2021-12</date><risdate>2021</risdate><volume>218</volume><issue>24</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, ellipsometry, reflection high energy diffraction and transmission electron microscopy are used to gain inside into the effect of Ge on the formation of ultrathin 3C‐SiC layers on Si(111) substrates. Accompanying the experimental investigations with simulations it is found that the ultrathin single crystalline 3C‐SiC layer is formed on top of a gradient Si1–x–yGexCy buffer layer due to a complex alloying and alloy decomposition processes promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress at very early growth stages as well as the interface properties of the 3C‐SiC/Si heterostructure. Useful yields of secondary ions of Ge in Si matrix and Si dimer are estimated. Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, reflection high energy electron diffraction, ellipsometry, and transmission electron microscopy investigations are used to gain inside into the effect of Ge on the chemoheteroepitaxy of 3C‐SiC on Si(111). Experimental investigations and simulations demonstrate the formation of a ultrathin single crystalline 3C‐SiC layer on a gradient Si1–x–yGexCy buffer layer due to an alloying and alloy decomposition promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress and the interface at very early growth stages.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202100399</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2611-7720</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2021-12, Vol.218 (24), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2611901163
source Access via Wiley Online Library
subjects Buffer layers
cubic silicon carbide
diffusion
Dimers
Ellipsometry
Fourier transformed infrared spectroscopy
Germanium
heteroepitaxy
Heterostructures
Infrared reflection
Infrared spectroscopy
Interdiffusion
Interfacial properties
molecular beam epitaxy
Nucleation
phase transition
Residual stress
Secondary ion mass spectroscopy
Silicon substrates
Spectrum analysis
title Chemoheteroepitaxy of 3C‐SiC(111) on Si(111): Influence of Predeposited Ge on Structure and Composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemoheteroepitaxy%20of%203C%E2%80%90SiC(111)%20on%20Si(111):%20Influence%20of%20Predeposited%20Ge%20on%20Structure%20and%20Composition&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Zgheib,%20Charbel&rft.date=2021-12&rft.volume=218&rft.issue=24&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202100399&rft_dat=%3Cproquest_cross%3E2611901163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611901163&rft_id=info:pmid/&rfr_iscdi=true