Moments and random number generation for the truncated elliptical family of distributions
This paper proposes an algorithm to generate random numbers from any member of the truncated multivariate elliptical family of distributions with a strictly decreasing density generating function. Based on Neal (2003) and Ho et al. (2012), we construct an efficient sampling method by means of a slic...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Valeriano, Katherine A L Galarza, Christian E Matos, Larissa A |
description | This paper proposes an algorithm to generate random numbers from any member of the truncated multivariate elliptical family of distributions with a strictly decreasing density generating function. Based on Neal (2003) and Ho et al. (2012), we construct an efficient sampling method by means of a slice sampling algorithm with Gibbs sampler steps. We also provide a faster approach to approximate the first and the second moment for the truncated multivariate elliptical distributions where Monte Carlo integration is used for the truncated partition, and explicit expressions for the non-truncated part (Galarza et al., 2020). Examples and an application to environmental spatial data illustrate its usefulness. Methods are available for free in the new R library elliptical. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2611835250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611835250</sourcerecordid><originalsourceid>FETCH-proquest_journals_26118352503</originalsourceid><addsrcrecordid>eNqNi7sKwjAYRoMgWLTv8INzIU1M7S6Ki5uLU0ntH03JpeYy-PZW8AFcvjOc8y1IwTivq3bH2IqUMY6UUtbsmRC8ILeLt-hSBOkGCPN4Cy7bHgM80GGQSXsHygdIT4QUsrvLhAOgMXpK-i4NKGm1eYNXMOiYgu7z9xM3ZKmkiVj-uCbb0_F6OFdT8K-MMXWjz8HNqmNNXbdcMEH5f9UHUoRDKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611835250</pqid></control><display><type>article</type><title>Moments and random number generation for the truncated elliptical family of distributions</title><source>Free E- Journals</source><creator>Valeriano, Katherine A L ; Galarza, Christian E ; Matos, Larissa A</creator><creatorcontrib>Valeriano, Katherine A L ; Galarza, Christian E ; Matos, Larissa A</creatorcontrib><description>This paper proposes an algorithm to generate random numbers from any member of the truncated multivariate elliptical family of distributions with a strictly decreasing density generating function. Based on Neal (2003) and Ho et al. (2012), we construct an efficient sampling method by means of a slice sampling algorithm with Gibbs sampler steps. We also provide a faster approach to approximate the first and the second moment for the truncated multivariate elliptical distributions where Monte Carlo integration is used for the truncated partition, and explicit expressions for the non-truncated part (Galarza et al., 2020). Examples and an application to environmental spatial data illustrate its usefulness. Methods are available for free in the new R library elliptical.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Multivariate analysis ; Numbers ; Random numbers ; Sampling methods ; Spatial data</subject><ispartof>arXiv.org, 2021-12</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Valeriano, Katherine A L</creatorcontrib><creatorcontrib>Galarza, Christian E</creatorcontrib><creatorcontrib>Matos, Larissa A</creatorcontrib><title>Moments and random number generation for the truncated elliptical family of distributions</title><title>arXiv.org</title><description>This paper proposes an algorithm to generate random numbers from any member of the truncated multivariate elliptical family of distributions with a strictly decreasing density generating function. Based on Neal (2003) and Ho et al. (2012), we construct an efficient sampling method by means of a slice sampling algorithm with Gibbs sampler steps. We also provide a faster approach to approximate the first and the second moment for the truncated multivariate elliptical distributions where Monte Carlo integration is used for the truncated partition, and explicit expressions for the non-truncated part (Galarza et al., 2020). Examples and an application to environmental spatial data illustrate its usefulness. Methods are available for free in the new R library elliptical.</description><subject>Algorithms</subject><subject>Multivariate analysis</subject><subject>Numbers</subject><subject>Random numbers</subject><subject>Sampling methods</subject><subject>Spatial data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi7sKwjAYRoMgWLTv8INzIU1M7S6Ki5uLU0ntH03JpeYy-PZW8AFcvjOc8y1IwTivq3bH2IqUMY6UUtbsmRC8ILeLt-hSBOkGCPN4Cy7bHgM80GGQSXsHygdIT4QUsrvLhAOgMXpK-i4NKGm1eYNXMOiYgu7z9xM3ZKmkiVj-uCbb0_F6OFdT8K-MMXWjz8HNqmNNXbdcMEH5f9UHUoRDKw</recordid><startdate>20211217</startdate><enddate>20211217</enddate><creator>Valeriano, Katherine A L</creator><creator>Galarza, Christian E</creator><creator>Matos, Larissa A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211217</creationdate><title>Moments and random number generation for the truncated elliptical family of distributions</title><author>Valeriano, Katherine A L ; Galarza, Christian E ; Matos, Larissa A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26118352503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Multivariate analysis</topic><topic>Numbers</topic><topic>Random numbers</topic><topic>Sampling methods</topic><topic>Spatial data</topic><toplevel>online_resources</toplevel><creatorcontrib>Valeriano, Katherine A L</creatorcontrib><creatorcontrib>Galarza, Christian E</creatorcontrib><creatorcontrib>Matos, Larissa A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valeriano, Katherine A L</au><au>Galarza, Christian E</au><au>Matos, Larissa A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Moments and random number generation for the truncated elliptical family of distributions</atitle><jtitle>arXiv.org</jtitle><date>2021-12-17</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This paper proposes an algorithm to generate random numbers from any member of the truncated multivariate elliptical family of distributions with a strictly decreasing density generating function. Based on Neal (2003) and Ho et al. (2012), we construct an efficient sampling method by means of a slice sampling algorithm with Gibbs sampler steps. We also provide a faster approach to approximate the first and the second moment for the truncated multivariate elliptical distributions where Monte Carlo integration is used for the truncated partition, and explicit expressions for the non-truncated part (Galarza et al., 2020). Examples and an application to environmental spatial data illustrate its usefulness. Methods are available for free in the new R library elliptical.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2611835250 |
source | Free E- Journals |
subjects | Algorithms Multivariate analysis Numbers Random numbers Sampling methods Spatial data |
title | Moments and random number generation for the truncated elliptical family of distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Moments%20and%20random%20number%20generation%20for%20the%20truncated%20elliptical%20family%20of%20distributions&rft.jtitle=arXiv.org&rft.au=Valeriano,%20Katherine%20A%20L&rft.date=2021-12-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2611835250%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611835250&rft_id=info:pmid/&rfr_iscdi=true |