On an Invertible Extension of a Nonself-Adjoint Singular Differential Operator on the Half-Line
We consider the differential operator generated in the class of compactly supported functions on the positive half-line by the nonself-adjoint differential expression with locally Lebesgue integrable coefficients. Cases are not excluded where ( ) are sign-alternating or can have infinite limits as (...
Gespeichert in:
Veröffentlicht in: | Differential equations 2021-10, Vol.57 (10), p.1408-1412 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1412 |
---|---|
container_issue | 10 |
container_start_page | 1408 |
container_title | Differential equations |
container_volume | 57 |
creator | Kussainova, L. K. Sultanaev, Ya. T. Kassym, A. S. |
description | We consider the differential operator generated in the class of compactly supported functions on the positive half-line by the nonself-adjoint differential expression
with locally Lebesgue integrable coefficients. Cases are not excluded where
(
) are sign-alternating or can have infinite limits as
(with any sign). Descriptions of the internal connections between the coefficients
(
) are given under which the operator in question admits a closed invertible extension in the space
. |
doi_str_mv | 10.1134/S0012266121100153 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2611680804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A716330468</galeid><sourcerecordid>A716330468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-200e9fb4b7de315aabae19b6930f8fa0ec2d266ecc21b36c86e05db71b45e4a93</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEuPjB3CLxLlgN23aHie-pYkdBucqbZ2RqUtGkiH492QaEgeEfLBlv4_9yoxdIFwhiuJ6AYB5LiXmiKksxQGboIQ6E1CLQzbZjbPd_JidhLACgKbCcsLaueXK8if7QT6abiR-9xnJBuMsd5or_uxsoFFn02HljI18YexyOyrPb43W5MlGo0Y-35BX0XmesPhG_FElZGYsnbEjrcZA5z_5lL3e373cPGaz-cPTzXSW9QKqmOUA1Oiu6KqBBJZKdYqw6WQjQNdaAfX5kNxT3-fYCdnXkqAcugq7oqRCNeKUXe73brx731KI7cptvU0n21wiyhpqKJLqaq9aqpFaY7WLXvUpBlqb3lnSJvWnFUohoJB1AnAP9N6F4Em3G2_Wyn-1CO3u8e2fxycm3zMhae2S_K-V_6FvikyD8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611680804</pqid></control><display><type>article</type><title>On an Invertible Extension of a Nonself-Adjoint Singular Differential Operator on the Half-Line</title><source>Springer Nature - Complete Springer Journals</source><creator>Kussainova, L. K. ; Sultanaev, Ya. T. ; Kassym, A. S.</creator><creatorcontrib>Kussainova, L. K. ; Sultanaev, Ya. T. ; Kassym, A. S.</creatorcontrib><description>We consider the differential operator generated in the class of compactly supported functions on the positive half-line by the nonself-adjoint differential expression
with locally Lebesgue integrable coefficients. Cases are not excluded where
(
) are sign-alternating or can have infinite limits as
(with any sign). Descriptions of the internal connections between the coefficients
(
) are given under which the operator in question admits a closed invertible extension in the space
.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266121100153</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Difference and Functional Equations ; Differential equations ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Ordinary Differential Equations ; Partial Differential Equations ; Short Communications</subject><ispartof>Differential equations, 2021-10, Vol.57 (10), p.1408-1412</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-200e9fb4b7de315aabae19b6930f8fa0ec2d266ecc21b36c86e05db71b45e4a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266121100153$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266121100153$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Kussainova, L. K.</creatorcontrib><creatorcontrib>Sultanaev, Ya. T.</creatorcontrib><creatorcontrib>Kassym, A. S.</creatorcontrib><title>On an Invertible Extension of a Nonself-Adjoint Singular Differential Operator on the Half-Line</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider the differential operator generated in the class of compactly supported functions on the positive half-line by the nonself-adjoint differential expression
with locally Lebesgue integrable coefficients. Cases are not excluded where
(
) are sign-alternating or can have infinite limits as
(with any sign). Descriptions of the internal connections between the coefficients
(
) are given under which the operator in question admits a closed invertible extension in the space
.</description><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Short Communications</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEuPjB3CLxLlgN23aHie-pYkdBucqbZ2RqUtGkiH492QaEgeEfLBlv4_9yoxdIFwhiuJ6AYB5LiXmiKksxQGboIQ6E1CLQzbZjbPd_JidhLACgKbCcsLaueXK8if7QT6abiR-9xnJBuMsd5or_uxsoFFn02HljI18YexyOyrPb43W5MlGo0Y-35BX0XmesPhG_FElZGYsnbEjrcZA5z_5lL3e373cPGaz-cPTzXSW9QKqmOUA1Oiu6KqBBJZKdYqw6WQjQNdaAfX5kNxT3-fYCdnXkqAcugq7oqRCNeKUXe73brx731KI7cptvU0n21wiyhpqKJLqaq9aqpFaY7WLXvUpBlqb3lnSJvWnFUohoJB1AnAP9N6F4Em3G2_Wyn-1CO3u8e2fxycm3zMhae2S_K-V_6FvikyD8g</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Kussainova, L. K.</creator><creator>Sultanaev, Ya. T.</creator><creator>Kassym, A. S.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20211001</creationdate><title>On an Invertible Extension of a Nonself-Adjoint Singular Differential Operator on the Half-Line</title><author>Kussainova, L. K. ; Sultanaev, Ya. T. ; Kassym, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-200e9fb4b7de315aabae19b6930f8fa0ec2d266ecc21b36c86e05db71b45e4a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Short Communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kussainova, L. K.</creatorcontrib><creatorcontrib>Sultanaev, Ya. T.</creatorcontrib><creatorcontrib>Kassym, A. S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kussainova, L. K.</au><au>Sultanaev, Ya. T.</au><au>Kassym, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On an Invertible Extension of a Nonself-Adjoint Singular Differential Operator on the Half-Line</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>57</volume><issue>10</issue><spage>1408</spage><epage>1412</epage><pages>1408-1412</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider the differential operator generated in the class of compactly supported functions on the positive half-line by the nonself-adjoint differential expression
with locally Lebesgue integrable coefficients. Cases are not excluded where
(
) are sign-alternating or can have infinite limits as
(with any sign). Descriptions of the internal connections between the coefficients
(
) are given under which the operator in question admits a closed invertible extension in the space
.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266121100153</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2021-10, Vol.57 (10), p.1408-1412 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_journals_2611680804 |
source | Springer Nature - Complete Springer Journals |
subjects | Difference and Functional Equations Differential equations Mathematics Mathematics and Statistics Operators (mathematics) Ordinary Differential Equations Partial Differential Equations Short Communications |
title | On an Invertible Extension of a Nonself-Adjoint Singular Differential Operator on the Half-Line |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20an%20Invertible%20Extension%20of%20a%20Nonself-Adjoint%20Singular%20Differential%20Operator%20on%20the%20Half-Line&rft.jtitle=Differential%20equations&rft.au=Kussainova,%20L.%20K.&rft.date=2021-10-01&rft.volume=57&rft.issue=10&rft.spage=1408&rft.epage=1412&rft.pages=1408-1412&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266121100153&rft_dat=%3Cgale_proqu%3EA716330468%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611680804&rft_id=info:pmid/&rft_galeid=A716330468&rfr_iscdi=true |