On an Invertible Extension of a Nonself-Adjoint Singular Differential Operator on the Half-Line

We consider the differential operator generated in the class of compactly supported functions on the positive half-line by the nonself-adjoint differential expression with locally Lebesgue integrable coefficients. Cases are not excluded where ( ) are sign-alternating or can have infinite limits as (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2021-10, Vol.57 (10), p.1408-1412
Hauptverfasser: Kussainova, L. K., Sultanaev, Ya. T., Kassym, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the differential operator generated in the class of compactly supported functions on the positive half-line by the nonself-adjoint differential expression with locally Lebesgue integrable coefficients. Cases are not excluded where ( ) are sign-alternating or can have infinite limits as (with any sign). Descriptions of the internal connections between the coefficients ( ) are given under which the operator in question admits a closed invertible extension in the space .
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266121100153