Constructing oxygen vacancy-enriched Fe2O3@NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting

Electrolysis of water to produce high-purity hydrogen is a very promising method. The development of green, high-efficiency, long-lasting and low-cost dual function electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential for electrocatalytic total wate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2022-01, Vol.24 (1), p.199-207
Hauptverfasser: Yan, Sang, Cao, Xi, Ding, Gaofei, Guo, Zixuan, Xue, Yingying, Li, Guohong, Yu, Runhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue 1
container_start_page 199
container_title CrystEngComm
container_volume 24
creator Yan, Sang
Cao, Xi
Ding, Gaofei
Guo, Zixuan
Xue, Yingying
Li, Guohong
Yu, Runhan
description Electrolysis of water to produce high-purity hydrogen is a very promising method. The development of green, high-efficiency, long-lasting and low-cost dual function electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential for electrocatalytic total water splitting. In this work, oxygen vacancy-enriched Fe2O3@NiO heterojunctions as bifunctional electrocatalysts are prepared through a facile one-step hydrothermal method followed by a calcination process. The synergistic effect of Fe2O3 and NiO, as well as the rich oxygen vacancies in Fe2O3, optimize their electronic structures, leading to an enhanced charge transfer rate and improved catalytic ability. Therefore, in both OER and HER processes, overpotentials needed for the Fe2O3@NiO catalyst to achieve the current density of 10 mA cm−2 under alkaline conditions are 224 mV and 187 mV, respectively. Furthermore, the catalyst showed excellent dynamic characteristics and durability. This research provides a new strategy for regulating the electronic structure of bifunctional catalysts by heterostructures and oxygen vacancies, thereby promoting the performance of total water splitting.
doi_str_mv 10.1039/d1ce01309b
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2611577585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611577585</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-80edf0d2608d237e7b2c29572fb82c12fcfcd5521d2c9dd4520fc9ac4072f9a23</originalsourceid><addsrcrecordid>eNotjrtOAzEURC0kJEKg4QssUS_4sd5HB4oIQYpIA3XkXF9nHSw7eL3AFvw7i6CaZs6cIeSKsxvOZHtrOCDjkrW7EzLjZVUVDZPyjJz3_YExXnLOZuR7EUOf0wDZhT2NX-MeA_3QoAOMBYbkoENDlyg28u7ZbWiHGVM8DGECJpLamGjn9p0fKVrrwGHIFD1CThF01n7MDqj2b9q7gPRTTzjtj97lX-EFObXa93j5n3Pyunx4WayK9ebxaXG_Lo68kXn6jcYyIyrWGCFrrHcCRKtqYXeNAC4sWDBKCW4EtMaUSjALrYaSTZVWCzkn13-7xxTfB-zz9hCHFCblVlScq7pWjZI_lHNg-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611577585</pqid></control><display><type>article</type><title>Constructing oxygen vacancy-enriched Fe2O3@NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yan, Sang ; Cao, Xi ; Ding, Gaofei ; Guo, Zixuan ; Xue, Yingying ; Li, Guohong ; Yu, Runhan</creator><creatorcontrib>Yan, Sang ; Cao, Xi ; Ding, Gaofei ; Guo, Zixuan ; Xue, Yingying ; Li, Guohong ; Yu, Runhan</creatorcontrib><description>Electrolysis of water to produce high-purity hydrogen is a very promising method. The development of green, high-efficiency, long-lasting and low-cost dual function electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential for electrocatalytic total water splitting. In this work, oxygen vacancy-enriched Fe2O3@NiO heterojunctions as bifunctional electrocatalysts are prepared through a facile one-step hydrothermal method followed by a calcination process. The synergistic effect of Fe2O3 and NiO, as well as the rich oxygen vacancies in Fe2O3, optimize their electronic structures, leading to an enhanced charge transfer rate and improved catalytic ability. Therefore, in both OER and HER processes, overpotentials needed for the Fe2O3@NiO catalyst to achieve the current density of 10 mA cm−2 under alkaline conditions are 224 mV and 187 mV, respectively. Furthermore, the catalyst showed excellent dynamic characteristics and durability. This research provides a new strategy for regulating the electronic structure of bifunctional catalysts by heterostructures and oxygen vacancies, thereby promoting the performance of total water splitting.</description><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/d1ce01309b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Charge transfer ; Dynamic characteristics ; Electrocatalysts ; Electrolysis ; Electronic structure ; Heterojunctions ; Heterostructures ; Hydrogen evolution reactions ; Nickel oxides ; Oxygen enrichment ; Oxygen evolution reactions ; Synergistic effect ; Vacancies ; Water splitting</subject><ispartof>CrystEngComm, 2022-01, Vol.24 (1), p.199-207</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yan, Sang</creatorcontrib><creatorcontrib>Cao, Xi</creatorcontrib><creatorcontrib>Ding, Gaofei</creatorcontrib><creatorcontrib>Guo, Zixuan</creatorcontrib><creatorcontrib>Xue, Yingying</creatorcontrib><creatorcontrib>Li, Guohong</creatorcontrib><creatorcontrib>Yu, Runhan</creatorcontrib><title>Constructing oxygen vacancy-enriched Fe2O3@NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting</title><title>CrystEngComm</title><description>Electrolysis of water to produce high-purity hydrogen is a very promising method. The development of green, high-efficiency, long-lasting and low-cost dual function electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential for electrocatalytic total water splitting. In this work, oxygen vacancy-enriched Fe2O3@NiO heterojunctions as bifunctional electrocatalysts are prepared through a facile one-step hydrothermal method followed by a calcination process. The synergistic effect of Fe2O3 and NiO, as well as the rich oxygen vacancies in Fe2O3, optimize their electronic structures, leading to an enhanced charge transfer rate and improved catalytic ability. Therefore, in both OER and HER processes, overpotentials needed for the Fe2O3@NiO catalyst to achieve the current density of 10 mA cm−2 under alkaline conditions are 224 mV and 187 mV, respectively. Furthermore, the catalyst showed excellent dynamic characteristics and durability. This research provides a new strategy for regulating the electronic structure of bifunctional catalysts by heterostructures and oxygen vacancies, thereby promoting the performance of total water splitting.</description><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Dynamic characteristics</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Electronic structure</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Nickel oxides</subject><subject>Oxygen enrichment</subject><subject>Oxygen evolution reactions</subject><subject>Synergistic effect</subject><subject>Vacancies</subject><subject>Water splitting</subject><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjrtOAzEURC0kJEKg4QssUS_4sd5HB4oIQYpIA3XkXF9nHSw7eL3AFvw7i6CaZs6cIeSKsxvOZHtrOCDjkrW7EzLjZVUVDZPyjJz3_YExXnLOZuR7EUOf0wDZhT2NX-MeA_3QoAOMBYbkoENDlyg28u7ZbWiHGVM8DGECJpLamGjn9p0fKVrrwGHIFD1CThF01n7MDqj2b9q7gPRTTzjtj97lX-EFObXa93j5n3Pyunx4WayK9ebxaXG_Lo68kXn6jcYyIyrWGCFrrHcCRKtqYXeNAC4sWDBKCW4EtMaUSjALrYaSTZVWCzkn13-7xxTfB-zz9hCHFCblVlScq7pWjZI_lHNg-w</recordid><startdate>20220107</startdate><enddate>20220107</enddate><creator>Yan, Sang</creator><creator>Cao, Xi</creator><creator>Ding, Gaofei</creator><creator>Guo, Zixuan</creator><creator>Xue, Yingying</creator><creator>Li, Guohong</creator><creator>Yu, Runhan</creator><general>Royal Society of Chemistry</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20220107</creationdate><title>Constructing oxygen vacancy-enriched Fe2O3@NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting</title><author>Yan, Sang ; Cao, Xi ; Ding, Gaofei ; Guo, Zixuan ; Xue, Yingying ; Li, Guohong ; Yu, Runhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-80edf0d2608d237e7b2c29572fb82c12fcfcd5521d2c9dd4520fc9ac4072f9a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Dynamic characteristics</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Electronic structure</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Nickel oxides</topic><topic>Oxygen enrichment</topic><topic>Oxygen evolution reactions</topic><topic>Synergistic effect</topic><topic>Vacancies</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Sang</creatorcontrib><creatorcontrib>Cao, Xi</creatorcontrib><creatorcontrib>Ding, Gaofei</creatorcontrib><creatorcontrib>Guo, Zixuan</creatorcontrib><creatorcontrib>Xue, Yingying</creatorcontrib><creatorcontrib>Li, Guohong</creatorcontrib><creatorcontrib>Yu, Runhan</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Sang</au><au>Cao, Xi</au><au>Ding, Gaofei</au><au>Guo, Zixuan</au><au>Xue, Yingying</au><au>Li, Guohong</au><au>Yu, Runhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing oxygen vacancy-enriched Fe2O3@NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting</atitle><jtitle>CrystEngComm</jtitle><date>2022-01-07</date><risdate>2022</risdate><volume>24</volume><issue>1</issue><spage>199</spage><epage>207</epage><pages>199-207</pages><eissn>1466-8033</eissn><abstract>Electrolysis of water to produce high-purity hydrogen is a very promising method. The development of green, high-efficiency, long-lasting and low-cost dual function electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential for electrocatalytic total water splitting. In this work, oxygen vacancy-enriched Fe2O3@NiO heterojunctions as bifunctional electrocatalysts are prepared through a facile one-step hydrothermal method followed by a calcination process. The synergistic effect of Fe2O3 and NiO, as well as the rich oxygen vacancies in Fe2O3, optimize their electronic structures, leading to an enhanced charge transfer rate and improved catalytic ability. Therefore, in both OER and HER processes, overpotentials needed for the Fe2O3@NiO catalyst to achieve the current density of 10 mA cm−2 under alkaline conditions are 224 mV and 187 mV, respectively. Furthermore, the catalyst showed excellent dynamic characteristics and durability. This research provides a new strategy for regulating the electronic structure of bifunctional catalysts by heterostructures and oxygen vacancies, thereby promoting the performance of total water splitting.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ce01309b</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1466-8033
ispartof CrystEngComm, 2022-01, Vol.24 (1), p.199-207
issn 1466-8033
language eng
recordid cdi_proquest_journals_2611577585
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Catalysts
Charge transfer
Dynamic characteristics
Electrocatalysts
Electrolysis
Electronic structure
Heterojunctions
Heterostructures
Hydrogen evolution reactions
Nickel oxides
Oxygen enrichment
Oxygen evolution reactions
Synergistic effect
Vacancies
Water splitting
title Constructing oxygen vacancy-enriched Fe2O3@NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T01%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20oxygen%20vacancy-enriched%20Fe2O3@NiO%20heterojunctions%20for%20highly%20efficient%20electrocatalytic%20alkaline%20water%20splitting&rft.jtitle=CrystEngComm&rft.au=Yan,%20Sang&rft.date=2022-01-07&rft.volume=24&rft.issue=1&rft.spage=199&rft.epage=207&rft.pages=199-207&rft.eissn=1466-8033&rft_id=info:doi/10.1039/d1ce01309b&rft_dat=%3Cproquest%3E2611577585%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611577585&rft_id=info:pmid/&rfr_iscdi=true