Constructing oxygen vacancy-enriched Fe2O3@NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting
Electrolysis of water to produce high-purity hydrogen is a very promising method. The development of green, high-efficiency, long-lasting and low-cost dual function electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential for electrocatalytic total wate...
Gespeichert in:
Veröffentlicht in: | CrystEngComm 2022-01, Vol.24 (1), p.199-207 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | 1 |
container_start_page | 199 |
container_title | CrystEngComm |
container_volume | 24 |
creator | Yan, Sang Cao, Xi Ding, Gaofei Guo, Zixuan Xue, Yingying Li, Guohong Yu, Runhan |
description | Electrolysis of water to produce high-purity hydrogen is a very promising method. The development of green, high-efficiency, long-lasting and low-cost dual function electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential for electrocatalytic total water splitting. In this work, oxygen vacancy-enriched Fe2O3@NiO heterojunctions as bifunctional electrocatalysts are prepared through a facile one-step hydrothermal method followed by a calcination process. The synergistic effect of Fe2O3 and NiO, as well as the rich oxygen vacancies in Fe2O3, optimize their electronic structures, leading to an enhanced charge transfer rate and improved catalytic ability. Therefore, in both OER and HER processes, overpotentials needed for the Fe2O3@NiO catalyst to achieve the current density of 10 mA cm−2 under alkaline conditions are 224 mV and 187 mV, respectively. Furthermore, the catalyst showed excellent dynamic characteristics and durability. This research provides a new strategy for regulating the electronic structure of bifunctional catalysts by heterostructures and oxygen vacancies, thereby promoting the performance of total water splitting. |
doi_str_mv | 10.1039/d1ce01309b |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2611577585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611577585</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-80edf0d2608d237e7b2c29572fb82c12fcfcd5521d2c9dd4520fc9ac4072f9a23</originalsourceid><addsrcrecordid>eNotjrtOAzEURC0kJEKg4QssUS_4sd5HB4oIQYpIA3XkXF9nHSw7eL3AFvw7i6CaZs6cIeSKsxvOZHtrOCDjkrW7EzLjZVUVDZPyjJz3_YExXnLOZuR7EUOf0wDZhT2NX-MeA_3QoAOMBYbkoENDlyg28u7ZbWiHGVM8DGECJpLamGjn9p0fKVrrwGHIFD1CThF01n7MDqj2b9q7gPRTTzjtj97lX-EFObXa93j5n3Pyunx4WayK9ebxaXG_Lo68kXn6jcYyIyrWGCFrrHcCRKtqYXeNAC4sWDBKCW4EtMaUSjALrYaSTZVWCzkn13-7xxTfB-zz9hCHFCblVlScq7pWjZI_lHNg-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611577585</pqid></control><display><type>article</type><title>Constructing oxygen vacancy-enriched Fe2O3@NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yan, Sang ; Cao, Xi ; Ding, Gaofei ; Guo, Zixuan ; Xue, Yingying ; Li, Guohong ; Yu, Runhan</creator><creatorcontrib>Yan, Sang ; Cao, Xi ; Ding, Gaofei ; Guo, Zixuan ; Xue, Yingying ; Li, Guohong ; Yu, Runhan</creatorcontrib><description>Electrolysis of water to produce high-purity hydrogen is a very promising method. The development of green, high-efficiency, long-lasting and low-cost dual function electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential for electrocatalytic total water splitting. In this work, oxygen vacancy-enriched Fe2O3@NiO heterojunctions as bifunctional electrocatalysts are prepared through a facile one-step hydrothermal method followed by a calcination process. The synergistic effect of Fe2O3 and NiO, as well as the rich oxygen vacancies in Fe2O3, optimize their electronic structures, leading to an enhanced charge transfer rate and improved catalytic ability. Therefore, in both OER and HER processes, overpotentials needed for the Fe2O3@NiO catalyst to achieve the current density of 10 mA cm−2 under alkaline conditions are 224 mV and 187 mV, respectively. Furthermore, the catalyst showed excellent dynamic characteristics and durability. This research provides a new strategy for regulating the electronic structure of bifunctional catalysts by heterostructures and oxygen vacancies, thereby promoting the performance of total water splitting.</description><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/d1ce01309b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Charge transfer ; Dynamic characteristics ; Electrocatalysts ; Electrolysis ; Electronic structure ; Heterojunctions ; Heterostructures ; Hydrogen evolution reactions ; Nickel oxides ; Oxygen enrichment ; Oxygen evolution reactions ; Synergistic effect ; Vacancies ; Water splitting</subject><ispartof>CrystEngComm, 2022-01, Vol.24 (1), p.199-207</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yan, Sang</creatorcontrib><creatorcontrib>Cao, Xi</creatorcontrib><creatorcontrib>Ding, Gaofei</creatorcontrib><creatorcontrib>Guo, Zixuan</creatorcontrib><creatorcontrib>Xue, Yingying</creatorcontrib><creatorcontrib>Li, Guohong</creatorcontrib><creatorcontrib>Yu, Runhan</creatorcontrib><title>Constructing oxygen vacancy-enriched Fe2O3@NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting</title><title>CrystEngComm</title><description>Electrolysis of water to produce high-purity hydrogen is a very promising method. The development of green, high-efficiency, long-lasting and low-cost dual function electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential for electrocatalytic total water splitting. In this work, oxygen vacancy-enriched Fe2O3@NiO heterojunctions as bifunctional electrocatalysts are prepared through a facile one-step hydrothermal method followed by a calcination process. The synergistic effect of Fe2O3 and NiO, as well as the rich oxygen vacancies in Fe2O3, optimize their electronic structures, leading to an enhanced charge transfer rate and improved catalytic ability. Therefore, in both OER and HER processes, overpotentials needed for the Fe2O3@NiO catalyst to achieve the current density of 10 mA cm−2 under alkaline conditions are 224 mV and 187 mV, respectively. Furthermore, the catalyst showed excellent dynamic characteristics and durability. This research provides a new strategy for regulating the electronic structure of bifunctional catalysts by heterostructures and oxygen vacancies, thereby promoting the performance of total water splitting.</description><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Dynamic characteristics</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Electronic structure</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Nickel oxides</subject><subject>Oxygen enrichment</subject><subject>Oxygen evolution reactions</subject><subject>Synergistic effect</subject><subject>Vacancies</subject><subject>Water splitting</subject><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjrtOAzEURC0kJEKg4QssUS_4sd5HB4oIQYpIA3XkXF9nHSw7eL3AFvw7i6CaZs6cIeSKsxvOZHtrOCDjkrW7EzLjZVUVDZPyjJz3_YExXnLOZuR7EUOf0wDZhT2NX-MeA_3QoAOMBYbkoENDlyg28u7ZbWiHGVM8DGECJpLamGjn9p0fKVrrwGHIFD1CThF01n7MDqj2b9q7gPRTTzjtj97lX-EFObXa93j5n3Pyunx4WayK9ebxaXG_Lo68kXn6jcYyIyrWGCFrrHcCRKtqYXeNAC4sWDBKCW4EtMaUSjALrYaSTZVWCzkn13-7xxTfB-zz9hCHFCblVlScq7pWjZI_lHNg-w</recordid><startdate>20220107</startdate><enddate>20220107</enddate><creator>Yan, Sang</creator><creator>Cao, Xi</creator><creator>Ding, Gaofei</creator><creator>Guo, Zixuan</creator><creator>Xue, Yingying</creator><creator>Li, Guohong</creator><creator>Yu, Runhan</creator><general>Royal Society of Chemistry</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20220107</creationdate><title>Constructing oxygen vacancy-enriched Fe2O3@NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting</title><author>Yan, Sang ; Cao, Xi ; Ding, Gaofei ; Guo, Zixuan ; Xue, Yingying ; Li, Guohong ; Yu, Runhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-80edf0d2608d237e7b2c29572fb82c12fcfcd5521d2c9dd4520fc9ac4072f9a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Dynamic characteristics</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Electronic structure</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Nickel oxides</topic><topic>Oxygen enrichment</topic><topic>Oxygen evolution reactions</topic><topic>Synergistic effect</topic><topic>Vacancies</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Sang</creatorcontrib><creatorcontrib>Cao, Xi</creatorcontrib><creatorcontrib>Ding, Gaofei</creatorcontrib><creatorcontrib>Guo, Zixuan</creatorcontrib><creatorcontrib>Xue, Yingying</creatorcontrib><creatorcontrib>Li, Guohong</creatorcontrib><creatorcontrib>Yu, Runhan</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Sang</au><au>Cao, Xi</au><au>Ding, Gaofei</au><au>Guo, Zixuan</au><au>Xue, Yingying</au><au>Li, Guohong</au><au>Yu, Runhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing oxygen vacancy-enriched Fe2O3@NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting</atitle><jtitle>CrystEngComm</jtitle><date>2022-01-07</date><risdate>2022</risdate><volume>24</volume><issue>1</issue><spage>199</spage><epage>207</epage><pages>199-207</pages><eissn>1466-8033</eissn><abstract>Electrolysis of water to produce high-purity hydrogen is a very promising method. The development of green, high-efficiency, long-lasting and low-cost dual function electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential for electrocatalytic total water splitting. In this work, oxygen vacancy-enriched Fe2O3@NiO heterojunctions as bifunctional electrocatalysts are prepared through a facile one-step hydrothermal method followed by a calcination process. The synergistic effect of Fe2O3 and NiO, as well as the rich oxygen vacancies in Fe2O3, optimize their electronic structures, leading to an enhanced charge transfer rate and improved catalytic ability. Therefore, in both OER and HER processes, overpotentials needed for the Fe2O3@NiO catalyst to achieve the current density of 10 mA cm−2 under alkaline conditions are 224 mV and 187 mV, respectively. Furthermore, the catalyst showed excellent dynamic characteristics and durability. This research provides a new strategy for regulating the electronic structure of bifunctional catalysts by heterostructures and oxygen vacancies, thereby promoting the performance of total water splitting.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ce01309b</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1466-8033 |
ispartof | CrystEngComm, 2022-01, Vol.24 (1), p.199-207 |
issn | 1466-8033 |
language | eng |
recordid | cdi_proquest_journals_2611577585 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Catalysts Charge transfer Dynamic characteristics Electrocatalysts Electrolysis Electronic structure Heterojunctions Heterostructures Hydrogen evolution reactions Nickel oxides Oxygen enrichment Oxygen evolution reactions Synergistic effect Vacancies Water splitting |
title | Constructing oxygen vacancy-enriched Fe2O3@NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T01%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20oxygen%20vacancy-enriched%20Fe2O3@NiO%20heterojunctions%20for%20highly%20efficient%20electrocatalytic%20alkaline%20water%20splitting&rft.jtitle=CrystEngComm&rft.au=Yan,%20Sang&rft.date=2022-01-07&rft.volume=24&rft.issue=1&rft.spage=199&rft.epage=207&rft.pages=199-207&rft.eissn=1466-8033&rft_id=info:doi/10.1039/d1ce01309b&rft_dat=%3Cproquest%3E2611577585%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611577585&rft_id=info:pmid/&rfr_iscdi=true |