Identification of cold tolerance QTLs at the bud burst stage in 211 rice landraces by GWAS

Background Rice is a crop that is very sensitive to low temperature, and its morphological development and production are greatly affected by low temperature. Therefore, understanding the genetic basis of cold tolerance in rice is of great significance for mining favorable genes and cultivating exce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC plant biology 2021-11, Vol.21 (1), p.542-542, Article 542
Hauptverfasser: Li, Caijing, Liu, Jindong, Bian, Jianxin, Jin, Tao, Zou, Baoli, Liu, Shilei, Zhang, Xiangyu, Wang, Peng, Tan, Jingai, Wu, Guangliang, Chen, Qin, Wang, Yanning, Zhong, Qi, Huang, Shiying, Yang, Mengmeng, Huang, Tao, He, Haohua, Bian, Jianmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 1
container_start_page 542
container_title BMC plant biology
container_volume 21
creator Li, Caijing
Liu, Jindong
Bian, Jianxin
Jin, Tao
Zou, Baoli
Liu, Shilei
Zhang, Xiangyu
Wang, Peng
Tan, Jingai
Wu, Guangliang
Chen, Qin
Wang, Yanning
Zhong, Qi
Huang, Shiying
Yang, Mengmeng
Huang, Tao
He, Haohua
Bian, Jianmin
description Background Rice is a crop that is very sensitive to low temperature, and its morphological development and production are greatly affected by low temperature. Therefore, understanding the genetic basis of cold tolerance in rice is of great significance for mining favorable genes and cultivating excellent rice varieties. However, there have been limited studies focusing on cold tolerance at the bud burst stage; therefore, considerable attention should be given to the genetic basis of cold tolerance at this stage. Results In this study, a natural population consisting of 211 rice landraces collected from 15 provinces in China and other countries was used for the first time to evaluate cold tolerance at the bud burst stage. Population structure analysis showed that this population was divided into two groups and was rich in genetic diversity. Our evaluation results confirmed that japonica rice was more tolerant to cold at the bud burst stage than indica rice. A genome-wide association study (GWAS) was performed with the phenotypic data of 211 rice landraces and a 36,727 SNP dataset under a mixed linear model. Twelve QTLs (P < 0.0001) were identified for the seedling survival rate (SR) after treatment at 4 degrees C, in which there were five QTLs (qSR2-2, qSR3-1, qSR3-2, qSR3-3 and qSR9) that were colocalized with those from previous studies and seven QTLs (qSR2-1, qSR3-4, qSR3-5, qSR3-6, qSR3-7, qSR4 and qSR7) that were reported for the first time. Among these QTLs, qSR9, harboring the most significant SNP, explained the most phenotypic variation. Through bioinformatics analysis, five genes (LOC_Os09g12440, LOC_Os09g12470, LOC_Os09g12520, LOC_Os09g12580 and LOC_Os09g12720) were identified as candidates for qSR9. Conclusion This natural population consisting of 211 rice landraces combined with high-density SNPs will serve as a better choice for identifying rice QTLs/genes in the future, and the detected QTLs associated with cold tolerance at the bud burst stage in rice will be conducive to further mining favorable genes and breeding rice varieties under cold stress.
doi_str_mv 10.1186/s12870-021-03317-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2611346574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A686473838</galeid><doaj_id>oai_doaj_org_article_3851360903fb451887996483553d596f</doaj_id><sourcerecordid>A686473838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-16f03b2df2d24af30a0ab6a26a75e04e8cb0662800b7cc9452cbe4f7180bdd0d3</originalsourceid><addsrcrecordid>eNqNkl1rFDEYhQdRbK3-AS8k4I0iU98kM0nmRlgWrQsLoq0I3oRMPrYps5OaZNT-e7O7de2KFzIZEjLPOckcTlU9xXCKsWCvEyaCQw0E10Ap5jW_Vx3jhuOaENLdv7M-qh6ldAWAuWi6h9URbQRA19Hj6uvC2DF757XKPowoOKTDYFAOg41q1BZ9vFgmpDLKlxb1kylvTBmlrFYW-RERjFH0hRvUaKLSNqH-Bp19mZ0_rh44NST75HY-qT6_e3sxf18vP5wt5rNlrduO5xozB7QnxhFDGuUoKFA9U4Qp3lporNA9MEbKhXuudde0RPe2cRwL6I0BQ0-qxc7XBHUlr6Nfq3gjg_JyuxHiSqqYvR6spKLFlEEH1PVNi4XgXccaQduWmrZjrni92XldT_3aGl2yiWo4MD38MvpLuQrfpWDQtlwUgxe3BjF8m2zKcu2TtkNJx4YpScIABBaUs4I-_wu9ClMcS1SFwpg2rOXNH2qlyg_40YVyrt6YyhkTrOFU0M2xp_-gymPs2uswWufL_oHg5YGgMNn-zCs1pSQX558OWbJjdQwpRev2eWCQmybKXRNlaaLcNlHyInp2N8m95Hf1CiB2wA_bB5e0t6VtewwAOCmD4bICNvd52895mMZcpK_-X0p_AZlR9LE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611346574</pqid></control><display><type>article</type><title>Identification of cold tolerance QTLs at the bud burst stage in 211 rice landraces by GWAS</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerNature Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>PubMed Central Open Access</source><creator>Li, Caijing ; Liu, Jindong ; Bian, Jianxin ; Jin, Tao ; Zou, Baoli ; Liu, Shilei ; Zhang, Xiangyu ; Wang, Peng ; Tan, Jingai ; Wu, Guangliang ; Chen, Qin ; Wang, Yanning ; Zhong, Qi ; Huang, Shiying ; Yang, Mengmeng ; Huang, Tao ; He, Haohua ; Bian, Jianmin</creator><creatorcontrib>Li, Caijing ; Liu, Jindong ; Bian, Jianxin ; Jin, Tao ; Zou, Baoli ; Liu, Shilei ; Zhang, Xiangyu ; Wang, Peng ; Tan, Jingai ; Wu, Guangliang ; Chen, Qin ; Wang, Yanning ; Zhong, Qi ; Huang, Shiying ; Yang, Mengmeng ; Huang, Tao ; He, Haohua ; Bian, Jianmin</creatorcontrib><description>Background Rice is a crop that is very sensitive to low temperature, and its morphological development and production are greatly affected by low temperature. Therefore, understanding the genetic basis of cold tolerance in rice is of great significance for mining favorable genes and cultivating excellent rice varieties. However, there have been limited studies focusing on cold tolerance at the bud burst stage; therefore, considerable attention should be given to the genetic basis of cold tolerance at this stage. Results In this study, a natural population consisting of 211 rice landraces collected from 15 provinces in China and other countries was used for the first time to evaluate cold tolerance at the bud burst stage. Population structure analysis showed that this population was divided into two groups and was rich in genetic diversity. Our evaluation results confirmed that japonica rice was more tolerant to cold at the bud burst stage than indica rice. A genome-wide association study (GWAS) was performed with the phenotypic data of 211 rice landraces and a 36,727 SNP dataset under a mixed linear model. Twelve QTLs (P &lt; 0.0001) were identified for the seedling survival rate (SR) after treatment at 4 degrees C, in which there were five QTLs (qSR2-2, qSR3-1, qSR3-2, qSR3-3 and qSR9) that were colocalized with those from previous studies and seven QTLs (qSR2-1, qSR3-4, qSR3-5, qSR3-6, qSR3-7, qSR4 and qSR7) that were reported for the first time. Among these QTLs, qSR9, harboring the most significant SNP, explained the most phenotypic variation. Through bioinformatics analysis, five genes (LOC_Os09g12440, LOC_Os09g12470, LOC_Os09g12520, LOC_Os09g12580 and LOC_Os09g12720) were identified as candidates for qSR9. Conclusion This natural population consisting of 211 rice landraces combined with high-density SNPs will serve as a better choice for identifying rice QTLs/genes in the future, and the detected QTLs associated with cold tolerance at the bud burst stage in rice will be conducive to further mining favorable genes and breeding rice varieties under cold stress.</description><identifier>ISSN: 1471-2229</identifier><identifier>EISSN: 1471-2229</identifier><identifier>DOI: 10.1186/s12870-021-03317-7</identifier><identifier>PMID: 34800993</identifier><language>eng</language><publisher>LONDON: Springer Nature</publisher><subject>Agricultural research ; Bioinformatics ; Cereal crops ; Chromosomes ; Cold ; Cold Temperature ; Cold tolerance ; Cold-Shock Response - genetics ; Crops, Agricultural - genetics ; Crops, Agricultural - growth &amp; development ; Flowers - genetics ; Flowers - growth &amp; development ; Gene Expression Regulation, Plant ; Genes ; Genes, Plant ; Genetic aspects ; Genetic diversity ; Genetic Variation ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Genomics ; Genotype ; Germplasm ; GWAS ; Hardiness ; Life Sciences &amp; Biomedicine ; Low temperature ; Methods ; Oryza - genetics ; Oryza - growth &amp; development ; Phenotypic variations ; Physiological aspects ; Plant breeding ; Plant Sciences ; Plants ; Population ; Population structure ; Population studies ; Proteins ; QTL ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Rice ; Rice landraces ; Science &amp; Technology ; Seedling survival rate (SR) ; Seedlings ; Signal transduction ; Single-nucleotide polymorphism ; Structural analysis ; Survival ; Temperature tolerance</subject><ispartof>BMC plant biology, 2021-11, Vol.21 (1), p.542-542, Article 542</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>23</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000720726100006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c597t-16f03b2df2d24af30a0ab6a26a75e04e8cb0662800b7cc9452cbe4f7180bdd0d3</citedby><cites>FETCH-LOGICAL-c597t-16f03b2df2d24af30a0ab6a26a75e04e8cb0662800b7cc9452cbe4f7180bdd0d3</cites><orcidid>0000-0002-8988-269X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605578/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605578/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34800993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Caijing</creatorcontrib><creatorcontrib>Liu, Jindong</creatorcontrib><creatorcontrib>Bian, Jianxin</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Zou, Baoli</creatorcontrib><creatorcontrib>Liu, Shilei</creatorcontrib><creatorcontrib>Zhang, Xiangyu</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Tan, Jingai</creatorcontrib><creatorcontrib>Wu, Guangliang</creatorcontrib><creatorcontrib>Chen, Qin</creatorcontrib><creatorcontrib>Wang, Yanning</creatorcontrib><creatorcontrib>Zhong, Qi</creatorcontrib><creatorcontrib>Huang, Shiying</creatorcontrib><creatorcontrib>Yang, Mengmeng</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>He, Haohua</creatorcontrib><creatorcontrib>Bian, Jianmin</creatorcontrib><title>Identification of cold tolerance QTLs at the bud burst stage in 211 rice landraces by GWAS</title><title>BMC plant biology</title><addtitle>BMC PLANT BIOL</addtitle><addtitle>BMC Plant Biol</addtitle><description>Background Rice is a crop that is very sensitive to low temperature, and its morphological development and production are greatly affected by low temperature. Therefore, understanding the genetic basis of cold tolerance in rice is of great significance for mining favorable genes and cultivating excellent rice varieties. However, there have been limited studies focusing on cold tolerance at the bud burst stage; therefore, considerable attention should be given to the genetic basis of cold tolerance at this stage. Results In this study, a natural population consisting of 211 rice landraces collected from 15 provinces in China and other countries was used for the first time to evaluate cold tolerance at the bud burst stage. Population structure analysis showed that this population was divided into two groups and was rich in genetic diversity. Our evaluation results confirmed that japonica rice was more tolerant to cold at the bud burst stage than indica rice. A genome-wide association study (GWAS) was performed with the phenotypic data of 211 rice landraces and a 36,727 SNP dataset under a mixed linear model. Twelve QTLs (P &lt; 0.0001) were identified for the seedling survival rate (SR) after treatment at 4 degrees C, in which there were five QTLs (qSR2-2, qSR3-1, qSR3-2, qSR3-3 and qSR9) that were colocalized with those from previous studies and seven QTLs (qSR2-1, qSR3-4, qSR3-5, qSR3-6, qSR3-7, qSR4 and qSR7) that were reported for the first time. Among these QTLs, qSR9, harboring the most significant SNP, explained the most phenotypic variation. Through bioinformatics analysis, five genes (LOC_Os09g12440, LOC_Os09g12470, LOC_Os09g12520, LOC_Os09g12580 and LOC_Os09g12720) were identified as candidates for qSR9. Conclusion This natural population consisting of 211 rice landraces combined with high-density SNPs will serve as a better choice for identifying rice QTLs/genes in the future, and the detected QTLs associated with cold tolerance at the bud burst stage in rice will be conducive to further mining favorable genes and breeding rice varieties under cold stress.</description><subject>Agricultural research</subject><subject>Bioinformatics</subject><subject>Cereal crops</subject><subject>Chromosomes</subject><subject>Cold</subject><subject>Cold Temperature</subject><subject>Cold tolerance</subject><subject>Cold-Shock Response - genetics</subject><subject>Crops, Agricultural - genetics</subject><subject>Crops, Agricultural - growth &amp; development</subject><subject>Flowers - genetics</subject><subject>Flowers - growth &amp; development</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Germplasm</subject><subject>GWAS</subject><subject>Hardiness</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Low temperature</subject><subject>Methods</subject><subject>Oryza - genetics</subject><subject>Oryza - growth &amp; development</subject><subject>Phenotypic variations</subject><subject>Physiological aspects</subject><subject>Plant breeding</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Population</subject><subject>Population structure</subject><subject>Population studies</subject><subject>Proteins</subject><subject>QTL</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Rice</subject><subject>Rice landraces</subject><subject>Science &amp; Technology</subject><subject>Seedling survival rate (SR)</subject><subject>Seedlings</subject><subject>Signal transduction</subject><subject>Single-nucleotide polymorphism</subject><subject>Structural analysis</subject><subject>Survival</subject><subject>Temperature tolerance</subject><issn>1471-2229</issn><issn>1471-2229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEYhQdRbK3-AS8k4I0iU98kM0nmRlgWrQsLoq0I3oRMPrYps5OaZNT-e7O7de2KFzIZEjLPOckcTlU9xXCKsWCvEyaCQw0E10Ap5jW_Vx3jhuOaENLdv7M-qh6ldAWAuWi6h9URbQRA19Hj6uvC2DF757XKPowoOKTDYFAOg41q1BZ9vFgmpDLKlxb1kylvTBmlrFYW-RERjFH0hRvUaKLSNqH-Bp19mZ0_rh44NST75HY-qT6_e3sxf18vP5wt5rNlrduO5xozB7QnxhFDGuUoKFA9U4Qp3lporNA9MEbKhXuudde0RPe2cRwL6I0BQ0-qxc7XBHUlr6Nfq3gjg_JyuxHiSqqYvR6spKLFlEEH1PVNi4XgXccaQduWmrZjrni92XldT_3aGl2yiWo4MD38MvpLuQrfpWDQtlwUgxe3BjF8m2zKcu2TtkNJx4YpScIABBaUs4I-_wu9ClMcS1SFwpg2rOXNH2qlyg_40YVyrt6YyhkTrOFU0M2xp_-gymPs2uswWufL_oHg5YGgMNn-zCs1pSQX558OWbJjdQwpRev2eWCQmybKXRNlaaLcNlHyInp2N8m95Hf1CiB2wA_bB5e0t6VtewwAOCmD4bICNvd52895mMZcpK_-X0p_AZlR9LE</recordid><startdate>20211120</startdate><enddate>20211120</enddate><creator>Li, Caijing</creator><creator>Liu, Jindong</creator><creator>Bian, Jianxin</creator><creator>Jin, Tao</creator><creator>Zou, Baoli</creator><creator>Liu, Shilei</creator><creator>Zhang, Xiangyu</creator><creator>Wang, Peng</creator><creator>Tan, Jingai</creator><creator>Wu, Guangliang</creator><creator>Chen, Qin</creator><creator>Wang, Yanning</creator><creator>Zhong, Qi</creator><creator>Huang, Shiying</creator><creator>Yang, Mengmeng</creator><creator>Huang, Tao</creator><creator>He, Haohua</creator><creator>Bian, Jianmin</creator><general>Springer Nature</general><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8988-269X</orcidid></search><sort><creationdate>20211120</creationdate><title>Identification of cold tolerance QTLs at the bud burst stage in 211 rice landraces by GWAS</title><author>Li, Caijing ; Liu, Jindong ; Bian, Jianxin ; Jin, Tao ; Zou, Baoli ; Liu, Shilei ; Zhang, Xiangyu ; Wang, Peng ; Tan, Jingai ; Wu, Guangliang ; Chen, Qin ; Wang, Yanning ; Zhong, Qi ; Huang, Shiying ; Yang, Mengmeng ; Huang, Tao ; He, Haohua ; Bian, Jianmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-16f03b2df2d24af30a0ab6a26a75e04e8cb0662800b7cc9452cbe4f7180bdd0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural research</topic><topic>Bioinformatics</topic><topic>Cereal crops</topic><topic>Chromosomes</topic><topic>Cold</topic><topic>Cold Temperature</topic><topic>Cold tolerance</topic><topic>Cold-Shock Response - genetics</topic><topic>Crops, Agricultural - genetics</topic><topic>Crops, Agricultural - growth &amp; development</topic><topic>Flowers - genetics</topic><topic>Flowers - growth &amp; development</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Germplasm</topic><topic>GWAS</topic><topic>Hardiness</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Low temperature</topic><topic>Methods</topic><topic>Oryza - genetics</topic><topic>Oryza - growth &amp; development</topic><topic>Phenotypic variations</topic><topic>Physiological aspects</topic><topic>Plant breeding</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Population</topic><topic>Population structure</topic><topic>Population studies</topic><topic>Proteins</topic><topic>QTL</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Rice</topic><topic>Rice landraces</topic><topic>Science &amp; Technology</topic><topic>Seedling survival rate (SR)</topic><topic>Seedlings</topic><topic>Signal transduction</topic><topic>Single-nucleotide polymorphism</topic><topic>Structural analysis</topic><topic>Survival</topic><topic>Temperature tolerance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Caijing</creatorcontrib><creatorcontrib>Liu, Jindong</creatorcontrib><creatorcontrib>Bian, Jianxin</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Zou, Baoli</creatorcontrib><creatorcontrib>Liu, Shilei</creatorcontrib><creatorcontrib>Zhang, Xiangyu</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Tan, Jingai</creatorcontrib><creatorcontrib>Wu, Guangliang</creatorcontrib><creatorcontrib>Chen, Qin</creatorcontrib><creatorcontrib>Wang, Yanning</creatorcontrib><creatorcontrib>Zhong, Qi</creatorcontrib><creatorcontrib>Huang, Shiying</creatorcontrib><creatorcontrib>Yang, Mengmeng</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>He, Haohua</creatorcontrib><creatorcontrib>Bian, Jianmin</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Caijing</au><au>Liu, Jindong</au><au>Bian, Jianxin</au><au>Jin, Tao</au><au>Zou, Baoli</au><au>Liu, Shilei</au><au>Zhang, Xiangyu</au><au>Wang, Peng</au><au>Tan, Jingai</au><au>Wu, Guangliang</au><au>Chen, Qin</au><au>Wang, Yanning</au><au>Zhong, Qi</au><au>Huang, Shiying</au><au>Yang, Mengmeng</au><au>Huang, Tao</au><au>He, Haohua</au><au>Bian, Jianmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of cold tolerance QTLs at the bud burst stage in 211 rice landraces by GWAS</atitle><jtitle>BMC plant biology</jtitle><stitle>BMC PLANT BIOL</stitle><addtitle>BMC Plant Biol</addtitle><date>2021-11-20</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>542</spage><epage>542</epage><pages>542-542</pages><artnum>542</artnum><issn>1471-2229</issn><eissn>1471-2229</eissn><abstract>Background Rice is a crop that is very sensitive to low temperature, and its morphological development and production are greatly affected by low temperature. Therefore, understanding the genetic basis of cold tolerance in rice is of great significance for mining favorable genes and cultivating excellent rice varieties. However, there have been limited studies focusing on cold tolerance at the bud burst stage; therefore, considerable attention should be given to the genetic basis of cold tolerance at this stage. Results In this study, a natural population consisting of 211 rice landraces collected from 15 provinces in China and other countries was used for the first time to evaluate cold tolerance at the bud burst stage. Population structure analysis showed that this population was divided into two groups and was rich in genetic diversity. Our evaluation results confirmed that japonica rice was more tolerant to cold at the bud burst stage than indica rice. A genome-wide association study (GWAS) was performed with the phenotypic data of 211 rice landraces and a 36,727 SNP dataset under a mixed linear model. Twelve QTLs (P &lt; 0.0001) were identified for the seedling survival rate (SR) after treatment at 4 degrees C, in which there were five QTLs (qSR2-2, qSR3-1, qSR3-2, qSR3-3 and qSR9) that were colocalized with those from previous studies and seven QTLs (qSR2-1, qSR3-4, qSR3-5, qSR3-6, qSR3-7, qSR4 and qSR7) that were reported for the first time. Among these QTLs, qSR9, harboring the most significant SNP, explained the most phenotypic variation. Through bioinformatics analysis, five genes (LOC_Os09g12440, LOC_Os09g12470, LOC_Os09g12520, LOC_Os09g12580 and LOC_Os09g12720) were identified as candidates for qSR9. Conclusion This natural population consisting of 211 rice landraces combined with high-density SNPs will serve as a better choice for identifying rice QTLs/genes in the future, and the detected QTLs associated with cold tolerance at the bud burst stage in rice will be conducive to further mining favorable genes and breeding rice varieties under cold stress.</abstract><cop>LONDON</cop><pub>Springer Nature</pub><pmid>34800993</pmid><doi>10.1186/s12870-021-03317-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8988-269X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2229
ispartof BMC plant biology, 2021-11, Vol.21 (1), p.542-542, Article 542
issn 1471-2229
1471-2229
language eng
recordid cdi_proquest_journals_2611346574
source MEDLINE; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; SpringerNature Journals; PubMed Central; Springer Nature OA/Free Journals; PubMed Central Open Access
subjects Agricultural research
Bioinformatics
Cereal crops
Chromosomes
Cold
Cold Temperature
Cold tolerance
Cold-Shock Response - genetics
Crops, Agricultural - genetics
Crops, Agricultural - growth & development
Flowers - genetics
Flowers - growth & development
Gene Expression Regulation, Plant
Genes
Genes, Plant
Genetic aspects
Genetic diversity
Genetic Variation
Genome-wide association studies
Genome-Wide Association Study
Genomes
Genomics
Genotype
Germplasm
GWAS
Hardiness
Life Sciences & Biomedicine
Low temperature
Methods
Oryza - genetics
Oryza - growth & development
Phenotypic variations
Physiological aspects
Plant breeding
Plant Sciences
Plants
Population
Population structure
Population studies
Proteins
QTL
Quantitative trait loci
Quantitative Trait Loci - genetics
Rice
Rice landraces
Science & Technology
Seedling survival rate (SR)
Seedlings
Signal transduction
Single-nucleotide polymorphism
Structural analysis
Survival
Temperature tolerance
title Identification of cold tolerance QTLs at the bud burst stage in 211 rice landraces by GWAS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20cold%20tolerance%20QTLs%20at%20the%20bud%20burst%20stage%20in%20211%20rice%20landraces%20by%20GWAS&rft.jtitle=BMC%20plant%20biology&rft.au=Li,%20Caijing&rft.date=2021-11-20&rft.volume=21&rft.issue=1&rft.spage=542&rft.epage=542&rft.pages=542-542&rft.artnum=542&rft.issn=1471-2229&rft.eissn=1471-2229&rft_id=info:doi/10.1186/s12870-021-03317-7&rft_dat=%3Cgale_proqu%3EA686473838%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611346574&rft_id=info:pmid/34800993&rft_galeid=A686473838&rft_doaj_id=oai_doaj_org_article_3851360903fb451887996483553d596f&rfr_iscdi=true