CNN-Based Terrain Classification with Moisture Content Using RGB-IR Images

Unmanned mobile robots in rough terrains are a key technology for achieving smart agriculture and smart construction. The mobility performance of robots highly depends on the moisture content of soil, and past few studies have focused on terrain classification using moisture content. In this study,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of robotics and mechatronics 2021-12, Vol.33 (6), p.1294-1302
Hauptverfasser: Goto, Tomoya, Ishigami, Genya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1302
container_issue 6
container_start_page 1294
container_title Journal of robotics and mechatronics
container_volume 33
creator Goto, Tomoya
Ishigami, Genya
description Unmanned mobile robots in rough terrains are a key technology for achieving smart agriculture and smart construction. The mobility performance of robots highly depends on the moisture content of soil, and past few studies have focused on terrain classification using moisture content. In this study, we demonstrate a convolutional neural network-based terrain classification method using RGB-infrared (IR) images. The method first classifies soil types and then categorizes the moisture content of the terrain. A three-step image preprocessing for RGB-IR images is also integrated into the method that is applicable to an actual environment. An experimental study of the terrain classification confirmed that the proposed method achieved an accuracy of more than 99% in classifying the soil type. Furthermore, the classification accuracy of the moisture content was approximately 69% for pumice and 100% for dark soil. The proposed method can be useful for different scenarios, such as small-scale agriculture with mobile robots, smart agriculture for monitoring the moisture content, and earthworks in small areas.
doi_str_mv 10.20965/jrm.2021.p1294
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2611271689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611271689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c6dfc0cd5ee85cb6e499a9fef0839672ba93f7b413e1941fda41af1da86561c23</originalsourceid><addsrcrecordid>eNotkEFPAjEUhBujiQQ5e23ieaGv7Xbbo2wUMYgJgXNTui2WwC62JcZ_74rOZeYwmUk-hO6BjClRopzs47FPFMYnoIpfoQFIyQpJuLpGA6KgLJji9BaNUtqTXiWvFKsG6LVeLoupSa7BaxejCS2uDyal4IM1OXQt_gr5A791IeVzdLju2uzajDcptDu8mk2L-QrPj2bn0h268eaQ3Ojfh2jz_LSuX4rF-2xePy4KyyqRCysab4ltSudkabfCcaWM8s4TyZSo6NYo5qstB-ZAcfCN4WA8NEaKUoClbIge_nZPsfs8u5T1vjvHtr_UVADQCoRUfWvy17KxSyk6r08xHE381kD0hZnumelfZvrCjP0APSNe6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611271689</pqid></control><display><type>article</type><title>CNN-Based Terrain Classification with Moisture Content Using RGB-IR Images</title><source>J-STAGE Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Freely Accessible Japanese Titles</source><creator>Goto, Tomoya ; Ishigami, Genya</creator><creatorcontrib>Goto, Tomoya ; Ishigami, Genya ; Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan</creatorcontrib><description>Unmanned mobile robots in rough terrains are a key technology for achieving smart agriculture and smart construction. The mobility performance of robots highly depends on the moisture content of soil, and past few studies have focused on terrain classification using moisture content. In this study, we demonstrate a convolutional neural network-based terrain classification method using RGB-infrared (IR) images. The method first classifies soil types and then categorizes the moisture content of the terrain. A three-step image preprocessing for RGB-IR images is also integrated into the method that is applicable to an actual environment. An experimental study of the terrain classification confirmed that the proposed method achieved an accuracy of more than 99% in classifying the soil type. Furthermore, the classification accuracy of the moisture content was approximately 69% for pumice and 100% for dark soil. The proposed method can be useful for different scenarios, such as small-scale agriculture with mobile robots, smart agriculture for monitoring the moisture content, and earthworks in small areas.</description><identifier>ISSN: 0915-3942</identifier><identifier>EISSN: 1883-8049</identifier><identifier>DOI: 10.20965/jrm.2021.p1294</identifier><language>eng</language><publisher>Tokyo: Fuji Technology Press Co. Ltd</publisher><subject>Agriculture ; Artificial neural networks ; Classification ; Image classification ; Infrared imagery ; Infrared imaging ; Moisture content ; Pumice ; Robots ; Soil classification ; Soil moisture ; Soils ; Terrain</subject><ispartof>Journal of robotics and mechatronics, 2021-12, Vol.33 (6), p.1294-1302</ispartof><rights>Copyright © 2021 Fuji Technology Press Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-c6dfc0cd5ee85cb6e499a9fef0839672ba93f7b413e1941fda41af1da86561c23</citedby><cites>FETCH-LOGICAL-c376t-c6dfc0cd5ee85cb6e499a9fef0839672ba93f7b413e1941fda41af1da86561c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Goto, Tomoya</creatorcontrib><creatorcontrib>Ishigami, Genya</creatorcontrib><creatorcontrib>Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan</creatorcontrib><title>CNN-Based Terrain Classification with Moisture Content Using RGB-IR Images</title><title>Journal of robotics and mechatronics</title><description>Unmanned mobile robots in rough terrains are a key technology for achieving smart agriculture and smart construction. The mobility performance of robots highly depends on the moisture content of soil, and past few studies have focused on terrain classification using moisture content. In this study, we demonstrate a convolutional neural network-based terrain classification method using RGB-infrared (IR) images. The method first classifies soil types and then categorizes the moisture content of the terrain. A three-step image preprocessing for RGB-IR images is also integrated into the method that is applicable to an actual environment. An experimental study of the terrain classification confirmed that the proposed method achieved an accuracy of more than 99% in classifying the soil type. Furthermore, the classification accuracy of the moisture content was approximately 69% for pumice and 100% for dark soil. The proposed method can be useful for different scenarios, such as small-scale agriculture with mobile robots, smart agriculture for monitoring the moisture content, and earthworks in small areas.</description><subject>Agriculture</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Image classification</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Moisture content</subject><subject>Pumice</subject><subject>Robots</subject><subject>Soil classification</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>Terrain</subject><issn>0915-3942</issn><issn>1883-8049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkEFPAjEUhBujiQQ5e23ieaGv7Xbbo2wUMYgJgXNTui2WwC62JcZ_74rOZeYwmUk-hO6BjClRopzs47FPFMYnoIpfoQFIyQpJuLpGA6KgLJji9BaNUtqTXiWvFKsG6LVeLoupSa7BaxejCS2uDyal4IM1OXQt_gr5A791IeVzdLju2uzajDcptDu8mk2L-QrPj2bn0h268eaQ3Ojfh2jz_LSuX4rF-2xePy4KyyqRCysab4ltSudkabfCcaWM8s4TyZSo6NYo5qstB-ZAcfCN4WA8NEaKUoClbIge_nZPsfs8u5T1vjvHtr_UVADQCoRUfWvy17KxSyk6r08xHE381kD0hZnumelfZvrCjP0APSNe6Q</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Goto, Tomoya</creator><creator>Ishigami, Genya</creator><general>Fuji Technology Press Co. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20211201</creationdate><title>CNN-Based Terrain Classification with Moisture Content Using RGB-IR Images</title><author>Goto, Tomoya ; Ishigami, Genya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c6dfc0cd5ee85cb6e499a9fef0839672ba93f7b413e1941fda41af1da86561c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Image classification</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Moisture content</topic><topic>Pumice</topic><topic>Robots</topic><topic>Soil classification</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>Terrain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goto, Tomoya</creatorcontrib><creatorcontrib>Ishigami, Genya</creatorcontrib><creatorcontrib>Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of robotics and mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goto, Tomoya</au><au>Ishigami, Genya</au><aucorp>Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNN-Based Terrain Classification with Moisture Content Using RGB-IR Images</atitle><jtitle>Journal of robotics and mechatronics</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>6</issue><spage>1294</spage><epage>1302</epage><pages>1294-1302</pages><issn>0915-3942</issn><eissn>1883-8049</eissn><abstract>Unmanned mobile robots in rough terrains are a key technology for achieving smart agriculture and smart construction. The mobility performance of robots highly depends on the moisture content of soil, and past few studies have focused on terrain classification using moisture content. In this study, we demonstrate a convolutional neural network-based terrain classification method using RGB-infrared (IR) images. The method first classifies soil types and then categorizes the moisture content of the terrain. A three-step image preprocessing for RGB-IR images is also integrated into the method that is applicable to an actual environment. An experimental study of the terrain classification confirmed that the proposed method achieved an accuracy of more than 99% in classifying the soil type. Furthermore, the classification accuracy of the moisture content was approximately 69% for pumice and 100% for dark soil. The proposed method can be useful for different scenarios, such as small-scale agriculture with mobile robots, smart agriculture for monitoring the moisture content, and earthworks in small areas.</abstract><cop>Tokyo</cop><pub>Fuji Technology Press Co. Ltd</pub><doi>10.20965/jrm.2021.p1294</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0915-3942
ispartof Journal of robotics and mechatronics, 2021-12, Vol.33 (6), p.1294-1302
issn 0915-3942
1883-8049
language eng
recordid cdi_proquest_journals_2611271689
source J-STAGE Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Freely Accessible Japanese Titles
subjects Agriculture
Artificial neural networks
Classification
Image classification
Infrared imagery
Infrared imaging
Moisture content
Pumice
Robots
Soil classification
Soil moisture
Soils
Terrain
title CNN-Based Terrain Classification with Moisture Content Using RGB-IR Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A28%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNN-Based%20Terrain%20Classification%20with%20Moisture%20Content%20Using%20RGB-IR%20Images&rft.jtitle=Journal%20of%20robotics%20and%20mechatronics&rft.au=Goto,%20Tomoya&rft.aucorp=Keio%20University%203-14-1%20Hiyoshi,%20Kohoku-ku,%20Yokohama,%20Kanagawa%20223-8522,%20Japan&rft.date=2021-12-01&rft.volume=33&rft.issue=6&rft.spage=1294&rft.epage=1302&rft.pages=1294-1302&rft.issn=0915-3942&rft.eissn=1883-8049&rft_id=info:doi/10.20965/jrm.2021.p1294&rft_dat=%3Cproquest_cross%3E2611271689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611271689&rft_id=info:pmid/&rfr_iscdi=true