Development of a Hydraulic Spring System for Vehicles Based on Various Control Laws

This article discusses the development of a hydraulic spring system for vehicles based on various control laws. Two approaches to the development of a control algorithm for nonlinear systems are presented. One approach uses the least squares method to calculate the controller parameters of a lineari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of machinery manufacture and reliability 2021-11, Vol.50 (6), p.534-538
Hauptverfasser: Godzhaev, Z. A., Kuz’min, V. A., Godzhaev, T. Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue 6
container_start_page 534
container_title Journal of machinery manufacture and reliability
container_volume 50
creator Godzhaev, Z. A.
Kuz’min, V. A.
Godzhaev, T. Z.
description This article discusses the development of a hydraulic spring system for vehicles based on various control laws. Two approaches to the development of a control algorithm for nonlinear systems are presented. One approach uses the least squares method to calculate the controller parameters of a linearized dynamic system model. The other approach uses a multilayer perceptron-type neural network to model and estimate the actual parameters of the nonlinear system. The main idea is to demonstrate how the actual parameter estimation of a nonlinear neural model that is being trained is applied in a linearized model controller with real-time computation.
doi_str_mv 10.3103/S105261882106008X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2611150024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611150024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-84303ccf36fc92d97a51a277692daf73b632f1fb34548a8e171c2da8f9b024b53</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA82om2WSTo1ZrhYKH1eJtyaaJbtluarKr9N-bWsGDeJoZ3nszzIfQOZBLBoRdlUA4FSAlBSIIkS8HaASK5ZliKj9MfZKznX6MTmJcEcK5YmKEylv7YVu_Wduux95hjWfbZdBD2xhcbkLTveJyG3u7xs4HvLBvjWltxDc62iX2HV7o0Pgh4onv-uBbPNef8RQdOd1Ge_ZTx-h5evc0mWXzx_uHyfU8M1TIPpM5I8wYx4Qzii5VoTloWhQiDdoVrBaMOnA1y3kutbRQgEmKdKomNK85G6OL_d5N8O-DjX218kPo0skqoQDgJPmSC_YuE3yMwboqvbXWYVsBqXbsqj_sUobuM_EbgQ2_m_8PfQGklW-u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611150024</pqid></control><display><type>article</type><title>Development of a Hydraulic Spring System for Vehicles Based on Various Control Laws</title><source>SpringerLink Journals</source><creator>Godzhaev, Z. A. ; Kuz’min, V. A. ; Godzhaev, T. Z.</creator><creatorcontrib>Godzhaev, Z. A. ; Kuz’min, V. A. ; Godzhaev, T. Z.</creatorcontrib><description>This article discusses the development of a hydraulic spring system for vehicles based on various control laws. Two approaches to the development of a control algorithm for nonlinear systems are presented. One approach uses the least squares method to calculate the controller parameters of a linearized dynamic system model. The other approach uses a multilayer perceptron-type neural network to model and estimate the actual parameters of the nonlinear system. The main idea is to demonstrate how the actual parameter estimation of a nonlinear neural model that is being trained is applied in a linearized model controller with real-time computation.</description><identifier>ISSN: 1052-6188</identifier><identifier>EISSN: 1934-9394</identifier><identifier>DOI: 10.3103/S105261882106008X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Control algorithms ; Control systems ; Control theory ; Controllers ; Engineering ; Least squares method ; Linearization ; Machines ; Manufacturing ; Mathematical models ; Multilayer perceptrons ; Neural networks ; New Technologies in Mechanical Engineering ; Nonlinear control ; Nonlinear systems ; Parameter estimation ; Processes</subject><ispartof>Journal of machinery manufacture and reliability, 2021-11, Vol.50 (6), p.534-538</ispartof><rights>Allerton Press, Inc. 2021. ISSN 1052-6188, Journal of Machinery Manufacture and Reliability, 2021, Vol. 50, No. 6, pp. 534–538. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2021, No. 6, pp. 73–78.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-84303ccf36fc92d97a51a277692daf73b632f1fb34548a8e171c2da8f9b024b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S105261882106008X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S105261882106008X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Godzhaev, Z. A.</creatorcontrib><creatorcontrib>Kuz’min, V. A.</creatorcontrib><creatorcontrib>Godzhaev, T. Z.</creatorcontrib><title>Development of a Hydraulic Spring System for Vehicles Based on Various Control Laws</title><title>Journal of machinery manufacture and reliability</title><addtitle>J. Mach. Manuf. Reliab</addtitle><description>This article discusses the development of a hydraulic spring system for vehicles based on various control laws. Two approaches to the development of a control algorithm for nonlinear systems are presented. One approach uses the least squares method to calculate the controller parameters of a linearized dynamic system model. The other approach uses a multilayer perceptron-type neural network to model and estimate the actual parameters of the nonlinear system. The main idea is to demonstrate how the actual parameter estimation of a nonlinear neural model that is being trained is applied in a linearized model controller with real-time computation.</description><subject>Algorithms</subject><subject>Control algorithms</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Engineering</subject><subject>Least squares method</subject><subject>Linearization</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>New Technologies in Mechanical Engineering</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Parameter estimation</subject><subject>Processes</subject><issn>1052-6188</issn><issn>1934-9394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA82om2WSTo1ZrhYKH1eJtyaaJbtluarKr9N-bWsGDeJoZ3nszzIfQOZBLBoRdlUA4FSAlBSIIkS8HaASK5ZliKj9MfZKznX6MTmJcEcK5YmKEylv7YVu_Wduux95hjWfbZdBD2xhcbkLTveJyG3u7xs4HvLBvjWltxDc62iX2HV7o0Pgh4onv-uBbPNef8RQdOd1Ge_ZTx-h5evc0mWXzx_uHyfU8M1TIPpM5I8wYx4Qzii5VoTloWhQiDdoVrBaMOnA1y3kutbRQgEmKdKomNK85G6OL_d5N8O-DjX218kPo0skqoQDgJPmSC_YuE3yMwboqvbXWYVsBqXbsqj_sUobuM_EbgQ2_m_8PfQGklW-u</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Godzhaev, Z. A.</creator><creator>Kuz’min, V. A.</creator><creator>Godzhaev, T. Z.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211101</creationdate><title>Development of a Hydraulic Spring System for Vehicles Based on Various Control Laws</title><author>Godzhaev, Z. A. ; Kuz’min, V. A. ; Godzhaev, T. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-84303ccf36fc92d97a51a277692daf73b632f1fb34548a8e171c2da8f9b024b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Control algorithms</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Engineering</topic><topic>Least squares method</topic><topic>Linearization</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>New Technologies in Mechanical Engineering</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Parameter estimation</topic><topic>Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godzhaev, Z. A.</creatorcontrib><creatorcontrib>Kuz’min, V. A.</creatorcontrib><creatorcontrib>Godzhaev, T. Z.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of machinery manufacture and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godzhaev, Z. A.</au><au>Kuz’min, V. A.</au><au>Godzhaev, T. Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Hydraulic Spring System for Vehicles Based on Various Control Laws</atitle><jtitle>Journal of machinery manufacture and reliability</jtitle><stitle>J. Mach. Manuf. Reliab</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>50</volume><issue>6</issue><spage>534</spage><epage>538</epage><pages>534-538</pages><issn>1052-6188</issn><eissn>1934-9394</eissn><abstract>This article discusses the development of a hydraulic spring system for vehicles based on various control laws. Two approaches to the development of a control algorithm for nonlinear systems are presented. One approach uses the least squares method to calculate the controller parameters of a linearized dynamic system model. The other approach uses a multilayer perceptron-type neural network to model and estimate the actual parameters of the nonlinear system. The main idea is to demonstrate how the actual parameter estimation of a nonlinear neural model that is being trained is applied in a linearized model controller with real-time computation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S105261882106008X</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1052-6188
ispartof Journal of machinery manufacture and reliability, 2021-11, Vol.50 (6), p.534-538
issn 1052-6188
1934-9394
language eng
recordid cdi_proquest_journals_2611150024
source SpringerLink Journals
subjects Algorithms
Control algorithms
Control systems
Control theory
Controllers
Engineering
Least squares method
Linearization
Machines
Manufacturing
Mathematical models
Multilayer perceptrons
Neural networks
New Technologies in Mechanical Engineering
Nonlinear control
Nonlinear systems
Parameter estimation
Processes
title Development of a Hydraulic Spring System for Vehicles Based on Various Control Laws
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Hydraulic%20Spring%20System%20for%20Vehicles%20Based%20on%20Various%20Control%20Laws&rft.jtitle=Journal%20of%20machinery%20manufacture%20and%20reliability&rft.au=Godzhaev,%20Z.%20A.&rft.date=2021-11-01&rft.volume=50&rft.issue=6&rft.spage=534&rft.epage=538&rft.pages=534-538&rft.issn=1052-6188&rft.eissn=1934-9394&rft_id=info:doi/10.3103/S105261882106008X&rft_dat=%3Cproquest_cross%3E2611150024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611150024&rft_id=info:pmid/&rfr_iscdi=true