Surface Tension and Shear Strain Contributions to the Mechanical Behavior of Individual Mg‐Ni‐Phyllosilicate Nanoscrolls
Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as...
Gespeichert in:
Veröffentlicht in: | Particle & particle systems characterization 2021-12, Vol.38 (12), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Particle & particle systems characterization |
container_volume | 38 |
creator | Krasilin, Andrei A. Khalisov, Maksim M. Khrapova, Ekaterina K. Kunkel, Tatyana S. Kozlov, Daniil A. Anuchin, Nikolay M. Enyashin, Andrey N. Ankudinov, Alexander V. |
description | Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as reinforcing fillers. However, previous nanomechanical experiments with individual phyllosilicate nanoscrolls are in poor agreement with theory. The main reason for this is the low accuracy of experiments, which leads to large measurement errors compared to measured average values. Here, the study of the mechanical properties of synthetic (Mg1–xNix)3Si2O5(OH)4 phyllosilicates is reported by testing a suspended nanoobject (a nanobridge) with an atomic force microscope (AFM). The Young's modulus of corresponding phyllosilicate model layers is also calculated by means of the density functional theory (DFT). The original AFM approach makes it possible to account for the probe slipping off the nanobridge and determine its boundary conditions. The measured Young's modulus values are considered within the models of surface tension and shear strain contributions. The shear strain appears to have a decisive impact on the measured Young's modulus (from 150 ± 70 GPa to 200 ± 210 GPa) and its spread.
The article reports an atomic force microscope and density functional theory studies of mechanical properties of Mg‐Ni‐phyllosilicate nanoscrolls. The Young's modulus value and spread are considered functions of measurement reproducibility, nanoscroll structural features, chemical composition, surface tension, and shear deformation contributions. Shear deformation is likely to be the principal physical reason for the observed Young's modulus spread. |
doi_str_mv | 10.1002/ppsc.202100153 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2611067034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611067034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-75ae392aabfc187affc42e8fa7b43417a09f11cf7f45ef53f2dc40f16be4e11f3</originalsourceid><addsrcrecordid>eNqFkM9OwzAMxiMEEmNw5RyJc0fcpO16hIo_k7YxaeNcZWlCM5WkJO3QJA48As_IkxA0BEcutmz_Ptv6EDoHMgJC4su29WIUkzgUkNADNIAkhogBZIdoQHLKIjJO02N04v2GEJImkA7Q27J3iguJV9J4bQ3mpsLLWnKHl53j2uDCms7pdd-FqcedxV0t8UyKmhsteIOvZc232jpsFZ6YSm911Yf27Onz_WOuQ1jUu6axXjcB7ySec2O9cLZp_Ck6Urzx8uwnD9Hj7c2quI-mD3eT4moaCQoZjbKES5rHnK-VgHHGlRIslmPFszWjDDJOcgUgVKZYIlVCVVwJRhSka8kkgKJDdLHf2zr70kvflRvbOxNOlnEKQNKMUBao0Z4Kz3nvpCpbp5-525VAym-Hy2-Hy1-HgyDfC151I3f_0OVisSz-tF_zT4RM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611067034</pqid></control><display><type>article</type><title>Surface Tension and Shear Strain Contributions to the Mechanical Behavior of Individual Mg‐Ni‐Phyllosilicate Nanoscrolls</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Krasilin, Andrei A. ; Khalisov, Maksim M. ; Khrapova, Ekaterina K. ; Kunkel, Tatyana S. ; Kozlov, Daniil A. ; Anuchin, Nikolay M. ; Enyashin, Andrey N. ; Ankudinov, Alexander V.</creator><creatorcontrib>Krasilin, Andrei A. ; Khalisov, Maksim M. ; Khrapova, Ekaterina K. ; Kunkel, Tatyana S. ; Kozlov, Daniil A. ; Anuchin, Nikolay M. ; Enyashin, Andrey N. ; Ankudinov, Alexander V.</creatorcontrib><description>Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as reinforcing fillers. However, previous nanomechanical experiments with individual phyllosilicate nanoscrolls are in poor agreement with theory. The main reason for this is the low accuracy of experiments, which leads to large measurement errors compared to measured average values. Here, the study of the mechanical properties of synthetic (Mg1–xNix)3Si2O5(OH)4 phyllosilicates is reported by testing a suspended nanoobject (a nanobridge) with an atomic force microscope (AFM). The Young's modulus of corresponding phyllosilicate model layers is also calculated by means of the density functional theory (DFT). The original AFM approach makes it possible to account for the probe slipping off the nanobridge and determine its boundary conditions. The measured Young's modulus values are considered within the models of surface tension and shear strain contributions. The shear strain appears to have a decisive impact on the measured Young's modulus (from 150 ± 70 GPa to 200 ± 210 GPa) and its spread.
The article reports an atomic force microscope and density functional theory studies of mechanical properties of Mg‐Ni‐phyllosilicate nanoscrolls. The Young's modulus value and spread are considered functions of measurement reproducibility, nanoscroll structural features, chemical composition, surface tension, and shear deformation contributions. Shear deformation is likely to be the principal physical reason for the observed Young's modulus spread.</description><identifier>ISSN: 0934-0866</identifier><identifier>EISSN: 1521-4117</identifier><identifier>DOI: 10.1002/ppsc.202100153</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic force microscopes ; Atomic force microscopy ; Boundary conditions ; Density functional theory ; density functional theory calculations ; Mechanical properties ; Metal oxides ; Metal sheets ; Modulus of elasticity ; multiwalled nanotubes ; Scrolling ; Shear strain ; Silicon dioxide ; Surface tension ; Young's modulus</subject><ispartof>Particle & particle systems characterization, 2021-12, Vol.38 (12), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-75ae392aabfc187affc42e8fa7b43417a09f11cf7f45ef53f2dc40f16be4e11f3</citedby><cites>FETCH-LOGICAL-c3173-75ae392aabfc187affc42e8fa7b43417a09f11cf7f45ef53f2dc40f16be4e11f3</cites><orcidid>0000-0002-3938-3024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppsc.202100153$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppsc.202100153$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Krasilin, Andrei A.</creatorcontrib><creatorcontrib>Khalisov, Maksim M.</creatorcontrib><creatorcontrib>Khrapova, Ekaterina K.</creatorcontrib><creatorcontrib>Kunkel, Tatyana S.</creatorcontrib><creatorcontrib>Kozlov, Daniil A.</creatorcontrib><creatorcontrib>Anuchin, Nikolay M.</creatorcontrib><creatorcontrib>Enyashin, Andrey N.</creatorcontrib><creatorcontrib>Ankudinov, Alexander V.</creatorcontrib><title>Surface Tension and Shear Strain Contributions to the Mechanical Behavior of Individual Mg‐Ni‐Phyllosilicate Nanoscrolls</title><title>Particle & particle systems characterization</title><description>Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as reinforcing fillers. However, previous nanomechanical experiments with individual phyllosilicate nanoscrolls are in poor agreement with theory. The main reason for this is the low accuracy of experiments, which leads to large measurement errors compared to measured average values. Here, the study of the mechanical properties of synthetic (Mg1–xNix)3Si2O5(OH)4 phyllosilicates is reported by testing a suspended nanoobject (a nanobridge) with an atomic force microscope (AFM). The Young's modulus of corresponding phyllosilicate model layers is also calculated by means of the density functional theory (DFT). The original AFM approach makes it possible to account for the probe slipping off the nanobridge and determine its boundary conditions. The measured Young's modulus values are considered within the models of surface tension and shear strain contributions. The shear strain appears to have a decisive impact on the measured Young's modulus (from 150 ± 70 GPa to 200 ± 210 GPa) and its spread.
The article reports an atomic force microscope and density functional theory studies of mechanical properties of Mg‐Ni‐phyllosilicate nanoscrolls. The Young's modulus value and spread are considered functions of measurement reproducibility, nanoscroll structural features, chemical composition, surface tension, and shear deformation contributions. Shear deformation is likely to be the principal physical reason for the observed Young's modulus spread.</description><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Boundary conditions</subject><subject>Density functional theory</subject><subject>density functional theory calculations</subject><subject>Mechanical properties</subject><subject>Metal oxides</subject><subject>Metal sheets</subject><subject>Modulus of elasticity</subject><subject>multiwalled nanotubes</subject><subject>Scrolling</subject><subject>Shear strain</subject><subject>Silicon dioxide</subject><subject>Surface tension</subject><subject>Young's modulus</subject><issn>0934-0866</issn><issn>1521-4117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OwzAMxiMEEmNw5RyJc0fcpO16hIo_k7YxaeNcZWlCM5WkJO3QJA48As_IkxA0BEcutmz_Ptv6EDoHMgJC4su29WIUkzgUkNADNIAkhogBZIdoQHLKIjJO02N04v2GEJImkA7Q27J3iguJV9J4bQ3mpsLLWnKHl53j2uDCms7pdd-FqcedxV0t8UyKmhsteIOvZc232jpsFZ6YSm911Yf27Onz_WOuQ1jUu6axXjcB7ySec2O9cLZp_Ck6Urzx8uwnD9Hj7c2quI-mD3eT4moaCQoZjbKES5rHnK-VgHHGlRIslmPFszWjDDJOcgUgVKZYIlVCVVwJRhSka8kkgKJDdLHf2zr70kvflRvbOxNOlnEKQNKMUBao0Z4Kz3nvpCpbp5-525VAym-Hy2-Hy1-HgyDfC151I3f_0OVisSz-tF_zT4RM</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Krasilin, Andrei A.</creator><creator>Khalisov, Maksim M.</creator><creator>Khrapova, Ekaterina K.</creator><creator>Kunkel, Tatyana S.</creator><creator>Kozlov, Daniil A.</creator><creator>Anuchin, Nikolay M.</creator><creator>Enyashin, Andrey N.</creator><creator>Ankudinov, Alexander V.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3938-3024</orcidid></search><sort><creationdate>202112</creationdate><title>Surface Tension and Shear Strain Contributions to the Mechanical Behavior of Individual Mg‐Ni‐Phyllosilicate Nanoscrolls</title><author>Krasilin, Andrei A. ; Khalisov, Maksim M. ; Khrapova, Ekaterina K. ; Kunkel, Tatyana S. ; Kozlov, Daniil A. ; Anuchin, Nikolay M. ; Enyashin, Andrey N. ; Ankudinov, Alexander V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-75ae392aabfc187affc42e8fa7b43417a09f11cf7f45ef53f2dc40f16be4e11f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Boundary conditions</topic><topic>Density functional theory</topic><topic>density functional theory calculations</topic><topic>Mechanical properties</topic><topic>Metal oxides</topic><topic>Metal sheets</topic><topic>Modulus of elasticity</topic><topic>multiwalled nanotubes</topic><topic>Scrolling</topic><topic>Shear strain</topic><topic>Silicon dioxide</topic><topic>Surface tension</topic><topic>Young's modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krasilin, Andrei A.</creatorcontrib><creatorcontrib>Khalisov, Maksim M.</creatorcontrib><creatorcontrib>Khrapova, Ekaterina K.</creatorcontrib><creatorcontrib>Kunkel, Tatyana S.</creatorcontrib><creatorcontrib>Kozlov, Daniil A.</creatorcontrib><creatorcontrib>Anuchin, Nikolay M.</creatorcontrib><creatorcontrib>Enyashin, Andrey N.</creatorcontrib><creatorcontrib>Ankudinov, Alexander V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Particle & particle systems characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krasilin, Andrei A.</au><au>Khalisov, Maksim M.</au><au>Khrapova, Ekaterina K.</au><au>Kunkel, Tatyana S.</au><au>Kozlov, Daniil A.</au><au>Anuchin, Nikolay M.</au><au>Enyashin, Andrey N.</au><au>Ankudinov, Alexander V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Tension and Shear Strain Contributions to the Mechanical Behavior of Individual Mg‐Ni‐Phyllosilicate Nanoscrolls</atitle><jtitle>Particle & particle systems characterization</jtitle><date>2021-12</date><risdate>2021</risdate><volume>38</volume><issue>12</issue><epage>n/a</epage><issn>0934-0866</issn><eissn>1521-4117</eissn><abstract>Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as reinforcing fillers. However, previous nanomechanical experiments with individual phyllosilicate nanoscrolls are in poor agreement with theory. The main reason for this is the low accuracy of experiments, which leads to large measurement errors compared to measured average values. Here, the study of the mechanical properties of synthetic (Mg1–xNix)3Si2O5(OH)4 phyllosilicates is reported by testing a suspended nanoobject (a nanobridge) with an atomic force microscope (AFM). The Young's modulus of corresponding phyllosilicate model layers is also calculated by means of the density functional theory (DFT). The original AFM approach makes it possible to account for the probe slipping off the nanobridge and determine its boundary conditions. The measured Young's modulus values are considered within the models of surface tension and shear strain contributions. The shear strain appears to have a decisive impact on the measured Young's modulus (from 150 ± 70 GPa to 200 ± 210 GPa) and its spread.
The article reports an atomic force microscope and density functional theory studies of mechanical properties of Mg‐Ni‐phyllosilicate nanoscrolls. The Young's modulus value and spread are considered functions of measurement reproducibility, nanoscroll structural features, chemical composition, surface tension, and shear deformation contributions. Shear deformation is likely to be the principal physical reason for the observed Young's modulus spread.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppsc.202100153</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3938-3024</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0934-0866 |
ispartof | Particle & particle systems characterization, 2021-12, Vol.38 (12), p.n/a |
issn | 0934-0866 1521-4117 |
language | eng |
recordid | cdi_proquest_journals_2611067034 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Atomic force microscopes Atomic force microscopy Boundary conditions Density functional theory density functional theory calculations Mechanical properties Metal oxides Metal sheets Modulus of elasticity multiwalled nanotubes Scrolling Shear strain Silicon dioxide Surface tension Young's modulus |
title | Surface Tension and Shear Strain Contributions to the Mechanical Behavior of Individual Mg‐Ni‐Phyllosilicate Nanoscrolls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Tension%20and%20Shear%20Strain%20Contributions%20to%20the%20Mechanical%20Behavior%20of%20Individual%20Mg%E2%80%90Ni%E2%80%90Phyllosilicate%20Nanoscrolls&rft.jtitle=Particle%20&%20particle%20systems%20characterization&rft.au=Krasilin,%20Andrei%20A.&rft.date=2021-12&rft.volume=38&rft.issue=12&rft.epage=n/a&rft.issn=0934-0866&rft.eissn=1521-4117&rft_id=info:doi/10.1002/ppsc.202100153&rft_dat=%3Cproquest_cross%3E2611067034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611067034&rft_id=info:pmid/&rfr_iscdi=true |