Surface Tension and Shear Strain Contributions to the Mechanical Behavior of Individual Mg‐Ni‐Phyllosilicate Nanoscrolls

Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Particle & particle systems characterization 2021-12, Vol.38 (12), p.n/a
Hauptverfasser: Krasilin, Andrei A., Khalisov, Maksim M., Khrapova, Ekaterina K., Kunkel, Tatyana S., Kozlov, Daniil A., Anuchin, Nikolay M., Enyashin, Andrey N., Ankudinov, Alexander V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Particle & particle systems characterization
container_volume 38
creator Krasilin, Andrei A.
Khalisov, Maksim M.
Khrapova, Ekaterina K.
Kunkel, Tatyana S.
Kozlov, Daniil A.
Anuchin, Nikolay M.
Enyashin, Andrey N.
Ankudinov, Alexander V.
description Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as reinforcing fillers. However, previous nanomechanical experiments with individual phyllosilicate nanoscrolls are in poor agreement with theory. The main reason for this is the low accuracy of experiments, which leads to large measurement errors compared to measured average values. Here, the study of the mechanical properties of synthetic (Mg1–xNix)3Si2O5(OH)4 phyllosilicates is reported by testing a suspended nanoobject (a nanobridge) with an atomic force microscope (AFM). The Young's modulus of corresponding phyllosilicate model layers is also calculated by means of the density functional theory (DFT). The original AFM approach makes it possible to account for the probe slipping off the nanobridge and determine its boundary conditions. The measured Young's modulus values are considered within the models of surface tension and shear strain contributions. The shear strain appears to have a decisive impact on the measured Young's modulus (from 150 ± 70 GPa to 200 ± 210 GPa) and its spread. The article reports an atomic force microscope and density functional theory studies of mechanical properties of Mg‐Ni‐phyllosilicate nanoscrolls. The Young's modulus value and spread are considered functions of measurement reproducibility, nanoscroll structural features, chemical composition, surface tension, and shear deformation contributions. Shear deformation is likely to be the principal physical reason for the observed Young's modulus spread.
doi_str_mv 10.1002/ppsc.202100153
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2611067034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611067034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-75ae392aabfc187affc42e8fa7b43417a09f11cf7f45ef53f2dc40f16be4e11f3</originalsourceid><addsrcrecordid>eNqFkM9OwzAMxiMEEmNw5RyJc0fcpO16hIo_k7YxaeNcZWlCM5WkJO3QJA48As_IkxA0BEcutmz_Ptv6EDoHMgJC4su29WIUkzgUkNADNIAkhogBZIdoQHLKIjJO02N04v2GEJImkA7Q27J3iguJV9J4bQ3mpsLLWnKHl53j2uDCms7pdd-FqcedxV0t8UyKmhsteIOvZc232jpsFZ6YSm911Yf27Onz_WOuQ1jUu6axXjcB7ySec2O9cLZp_Ck6Urzx8uwnD9Hj7c2quI-mD3eT4moaCQoZjbKES5rHnK-VgHHGlRIslmPFszWjDDJOcgUgVKZYIlVCVVwJRhSka8kkgKJDdLHf2zr70kvflRvbOxNOlnEKQNKMUBao0Z4Kz3nvpCpbp5-525VAym-Hy2-Hy1-HgyDfC151I3f_0OVisSz-tF_zT4RM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611067034</pqid></control><display><type>article</type><title>Surface Tension and Shear Strain Contributions to the Mechanical Behavior of Individual Mg‐Ni‐Phyllosilicate Nanoscrolls</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Krasilin, Andrei A. ; Khalisov, Maksim M. ; Khrapova, Ekaterina K. ; Kunkel, Tatyana S. ; Kozlov, Daniil A. ; Anuchin, Nikolay M. ; Enyashin, Andrey N. ; Ankudinov, Alexander V.</creator><creatorcontrib>Krasilin, Andrei A. ; Khalisov, Maksim M. ; Khrapova, Ekaterina K. ; Kunkel, Tatyana S. ; Kozlov, Daniil A. ; Anuchin, Nikolay M. ; Enyashin, Andrey N. ; Ankudinov, Alexander V.</creatorcontrib><description>Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as reinforcing fillers. However, previous nanomechanical experiments with individual phyllosilicate nanoscrolls are in poor agreement with theory. The main reason for this is the low accuracy of experiments, which leads to large measurement errors compared to measured average values. Here, the study of the mechanical properties of synthetic (Mg1–xNix)3Si2O5(OH)4 phyllosilicates is reported by testing a suspended nanoobject (a nanobridge) with an atomic force microscope (AFM). The Young's modulus of corresponding phyllosilicate model layers is also calculated by means of the density functional theory (DFT). The original AFM approach makes it possible to account for the probe slipping off the nanobridge and determine its boundary conditions. The measured Young's modulus values are considered within the models of surface tension and shear strain contributions. The shear strain appears to have a decisive impact on the measured Young's modulus (from 150 ± 70 GPa to 200 ± 210 GPa) and its spread. The article reports an atomic force microscope and density functional theory studies of mechanical properties of Mg‐Ni‐phyllosilicate nanoscrolls. The Young's modulus value and spread are considered functions of measurement reproducibility, nanoscroll structural features, chemical composition, surface tension, and shear deformation contributions. Shear deformation is likely to be the principal physical reason for the observed Young's modulus spread.</description><identifier>ISSN: 0934-0866</identifier><identifier>EISSN: 1521-4117</identifier><identifier>DOI: 10.1002/ppsc.202100153</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic force microscopes ; Atomic force microscopy ; Boundary conditions ; Density functional theory ; density functional theory calculations ; Mechanical properties ; Metal oxides ; Metal sheets ; Modulus of elasticity ; multiwalled nanotubes ; Scrolling ; Shear strain ; Silicon dioxide ; Surface tension ; Young's modulus</subject><ispartof>Particle &amp; particle systems characterization, 2021-12, Vol.38 (12), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-75ae392aabfc187affc42e8fa7b43417a09f11cf7f45ef53f2dc40f16be4e11f3</citedby><cites>FETCH-LOGICAL-c3173-75ae392aabfc187affc42e8fa7b43417a09f11cf7f45ef53f2dc40f16be4e11f3</cites><orcidid>0000-0002-3938-3024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppsc.202100153$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppsc.202100153$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Krasilin, Andrei A.</creatorcontrib><creatorcontrib>Khalisov, Maksim M.</creatorcontrib><creatorcontrib>Khrapova, Ekaterina K.</creatorcontrib><creatorcontrib>Kunkel, Tatyana S.</creatorcontrib><creatorcontrib>Kozlov, Daniil A.</creatorcontrib><creatorcontrib>Anuchin, Nikolay M.</creatorcontrib><creatorcontrib>Enyashin, Andrey N.</creatorcontrib><creatorcontrib>Ankudinov, Alexander V.</creatorcontrib><title>Surface Tension and Shear Strain Contributions to the Mechanical Behavior of Individual Mg‐Ni‐Phyllosilicate Nanoscrolls</title><title>Particle &amp; particle systems characterization</title><description>Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as reinforcing fillers. However, previous nanomechanical experiments with individual phyllosilicate nanoscrolls are in poor agreement with theory. The main reason for this is the low accuracy of experiments, which leads to large measurement errors compared to measured average values. Here, the study of the mechanical properties of synthetic (Mg1–xNix)3Si2O5(OH)4 phyllosilicates is reported by testing a suspended nanoobject (a nanobridge) with an atomic force microscope (AFM). The Young's modulus of corresponding phyllosilicate model layers is also calculated by means of the density functional theory (DFT). The original AFM approach makes it possible to account for the probe slipping off the nanobridge and determine its boundary conditions. The measured Young's modulus values are considered within the models of surface tension and shear strain contributions. The shear strain appears to have a decisive impact on the measured Young's modulus (from 150 ± 70 GPa to 200 ± 210 GPa) and its spread. The article reports an atomic force microscope and density functional theory studies of mechanical properties of Mg‐Ni‐phyllosilicate nanoscrolls. The Young's modulus value and spread are considered functions of measurement reproducibility, nanoscroll structural features, chemical composition, surface tension, and shear deformation contributions. Shear deformation is likely to be the principal physical reason for the observed Young's modulus spread.</description><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Boundary conditions</subject><subject>Density functional theory</subject><subject>density functional theory calculations</subject><subject>Mechanical properties</subject><subject>Metal oxides</subject><subject>Metal sheets</subject><subject>Modulus of elasticity</subject><subject>multiwalled nanotubes</subject><subject>Scrolling</subject><subject>Shear strain</subject><subject>Silicon dioxide</subject><subject>Surface tension</subject><subject>Young's modulus</subject><issn>0934-0866</issn><issn>1521-4117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OwzAMxiMEEmNw5RyJc0fcpO16hIo_k7YxaeNcZWlCM5WkJO3QJA48As_IkxA0BEcutmz_Ptv6EDoHMgJC4su29WIUkzgUkNADNIAkhogBZIdoQHLKIjJO02N04v2GEJImkA7Q27J3iguJV9J4bQ3mpsLLWnKHl53j2uDCms7pdd-FqcedxV0t8UyKmhsteIOvZc232jpsFZ6YSm911Yf27Onz_WOuQ1jUu6axXjcB7ySec2O9cLZp_Ck6Urzx8uwnD9Hj7c2quI-mD3eT4moaCQoZjbKES5rHnK-VgHHGlRIslmPFszWjDDJOcgUgVKZYIlVCVVwJRhSka8kkgKJDdLHf2zr70kvflRvbOxNOlnEKQNKMUBao0Z4Kz3nvpCpbp5-525VAym-Hy2-Hy1-HgyDfC151I3f_0OVisSz-tF_zT4RM</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Krasilin, Andrei A.</creator><creator>Khalisov, Maksim M.</creator><creator>Khrapova, Ekaterina K.</creator><creator>Kunkel, Tatyana S.</creator><creator>Kozlov, Daniil A.</creator><creator>Anuchin, Nikolay M.</creator><creator>Enyashin, Andrey N.</creator><creator>Ankudinov, Alexander V.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3938-3024</orcidid></search><sort><creationdate>202112</creationdate><title>Surface Tension and Shear Strain Contributions to the Mechanical Behavior of Individual Mg‐Ni‐Phyllosilicate Nanoscrolls</title><author>Krasilin, Andrei A. ; Khalisov, Maksim M. ; Khrapova, Ekaterina K. ; Kunkel, Tatyana S. ; Kozlov, Daniil A. ; Anuchin, Nikolay M. ; Enyashin, Andrey N. ; Ankudinov, Alexander V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-75ae392aabfc187affc42e8fa7b43417a09f11cf7f45ef53f2dc40f16be4e11f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Boundary conditions</topic><topic>Density functional theory</topic><topic>density functional theory calculations</topic><topic>Mechanical properties</topic><topic>Metal oxides</topic><topic>Metal sheets</topic><topic>Modulus of elasticity</topic><topic>multiwalled nanotubes</topic><topic>Scrolling</topic><topic>Shear strain</topic><topic>Silicon dioxide</topic><topic>Surface tension</topic><topic>Young's modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krasilin, Andrei A.</creatorcontrib><creatorcontrib>Khalisov, Maksim M.</creatorcontrib><creatorcontrib>Khrapova, Ekaterina K.</creatorcontrib><creatorcontrib>Kunkel, Tatyana S.</creatorcontrib><creatorcontrib>Kozlov, Daniil A.</creatorcontrib><creatorcontrib>Anuchin, Nikolay M.</creatorcontrib><creatorcontrib>Enyashin, Andrey N.</creatorcontrib><creatorcontrib>Ankudinov, Alexander V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Particle &amp; particle systems characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krasilin, Andrei A.</au><au>Khalisov, Maksim M.</au><au>Khrapova, Ekaterina K.</au><au>Kunkel, Tatyana S.</au><au>Kozlov, Daniil A.</au><au>Anuchin, Nikolay M.</au><au>Enyashin, Andrey N.</au><au>Ankudinov, Alexander V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Tension and Shear Strain Contributions to the Mechanical Behavior of Individual Mg‐Ni‐Phyllosilicate Nanoscrolls</atitle><jtitle>Particle &amp; particle systems characterization</jtitle><date>2021-12</date><risdate>2021</risdate><volume>38</volume><issue>12</issue><epage>n/a</epage><issn>0934-0866</issn><eissn>1521-4117</eissn><abstract>Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as reinforcing fillers. However, previous nanomechanical experiments with individual phyllosilicate nanoscrolls are in poor agreement with theory. The main reason for this is the low accuracy of experiments, which leads to large measurement errors compared to measured average values. Here, the study of the mechanical properties of synthetic (Mg1–xNix)3Si2O5(OH)4 phyllosilicates is reported by testing a suspended nanoobject (a nanobridge) with an atomic force microscope (AFM). The Young's modulus of corresponding phyllosilicate model layers is also calculated by means of the density functional theory (DFT). The original AFM approach makes it possible to account for the probe slipping off the nanobridge and determine its boundary conditions. The measured Young's modulus values are considered within the models of surface tension and shear strain contributions. The shear strain appears to have a decisive impact on the measured Young's modulus (from 150 ± 70 GPa to 200 ± 210 GPa) and its spread. The article reports an atomic force microscope and density functional theory studies of mechanical properties of Mg‐Ni‐phyllosilicate nanoscrolls. The Young's modulus value and spread are considered functions of measurement reproducibility, nanoscroll structural features, chemical composition, surface tension, and shear deformation contributions. Shear deformation is likely to be the principal physical reason for the observed Young's modulus spread.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppsc.202100153</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3938-3024</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0934-0866
ispartof Particle & particle systems characterization, 2021-12, Vol.38 (12), p.n/a
issn 0934-0866
1521-4117
language eng
recordid cdi_proquest_journals_2611067034
source Wiley Online Library Journals Frontfile Complete
subjects Atomic force microscopes
Atomic force microscopy
Boundary conditions
Density functional theory
density functional theory calculations
Mechanical properties
Metal oxides
Metal sheets
Modulus of elasticity
multiwalled nanotubes
Scrolling
Shear strain
Silicon dioxide
Surface tension
Young's modulus
title Surface Tension and Shear Strain Contributions to the Mechanical Behavior of Individual Mg‐Ni‐Phyllosilicate Nanoscrolls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Tension%20and%20Shear%20Strain%20Contributions%20to%20the%20Mechanical%20Behavior%20of%20Individual%20Mg%E2%80%90Ni%E2%80%90Phyllosilicate%20Nanoscrolls&rft.jtitle=Particle%20&%20particle%20systems%20characterization&rft.au=Krasilin,%20Andrei%20A.&rft.date=2021-12&rft.volume=38&rft.issue=12&rft.epage=n/a&rft.issn=0934-0866&rft.eissn=1521-4117&rft_id=info:doi/10.1002/ppsc.202100153&rft_dat=%3Cproquest_cross%3E2611067034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611067034&rft_id=info:pmid/&rfr_iscdi=true