Pseudorange error prediction for adaptive tightly coupled GNSS/IMU navigation in urban areas

The integration of global navigation satellite systems (GNSS) and inertial measurement unit (IMU) with the Kalman filter is widely used to enhance the availability of positioning in urban areas for many intelligent transport system (ITS) applications. In the traditional Kalman filter, the GNSS measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GPS solutions 2022, Vol.26 (1), Article 28
Hauptverfasser: Sun, Rui, Zhang, Zixuan, Cheng, Qi, Ochieng, Washington Yotto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title GPS solutions
container_volume 26
creator Sun, Rui
Zhang, Zixuan
Cheng, Qi
Ochieng, Washington Yotto
description The integration of global navigation satellite systems (GNSS) and inertial measurement unit (IMU) with the Kalman filter is widely used to enhance the availability of positioning in urban areas for many intelligent transport system (ITS) applications. In the traditional Kalman filter, the GNSS measurement noise is fixed based on factors determined a priori, instead of reflecting the impact of the surrounding environment on the received GNSS signal. This has the effect of degrading position accuracy and the a posteriori quality indicators. To address this issue, we propose a new measurement noise covariance update scheme, with the adaptive indicator generated from pseudorange error prediction results, for a tightly coupled GNSS/IMU navigation system in urban areas. Specifically, the pseudorange errors are predicted by means of an ensemble bagged regression tree model accounting for signal strength, satellite elevation angle and coordinate information. The urban experimental results show that the proposed algorithm provides a 3D accuracy of 9.21 m, with an improvement of 55% and 15%, respectively, over the traditional fixed covariance extended Kalman filter (EKF)-based fusion and EKF-based fusion with pseudorange error correction.
doi_str_mv 10.1007/s10291-021-01213-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2611008844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611008844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f9b421a5de3b6019a7aad8328bf97546cc93fcf97a8c8a311eb9cbe4ff1fe9a13</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxRdRsFb_AU8Bz2szyX4kRylaC_UDam9CmM0mdUvdXZPdQvvXG7uCNw_DzIP33sAviq6B3gKl-cQDZRJiysIAAx4fTqIRpEGCENlpuKmgccpzeh5deL-hlFEpk1H0_upNXzYO67UhxrnGkdaZstJd1dTEBokltl21M6Sr1h_ddk9007dbU5LZ83I5mT-tSI27ao3HQFWT3hVYE3QG_WV0ZnHrzdXvHkerh_u36WO8eJnNp3eLWHOQXWxlkTDAtDS8yChIzBFLwZkorMzTJNNacqvDjUIL5ACmkLowibVgjUTg4-hm6G1d89Ub36lN07s6vFQsgwBIiCQJLja4tGu8d8aq1lWf6PYKqPqhqAaKKlBUR4rqEEJ8CPlgDozcX_U_qW-Cenb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611008844</pqid></control><display><type>article</type><title>Pseudorange error prediction for adaptive tightly coupled GNSS/IMU navigation in urban areas</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Rui ; Zhang, Zixuan ; Cheng, Qi ; Ochieng, Washington Yotto</creator><creatorcontrib>Sun, Rui ; Zhang, Zixuan ; Cheng, Qi ; Ochieng, Washington Yotto</creatorcontrib><description>The integration of global navigation satellite systems (GNSS) and inertial measurement unit (IMU) with the Kalman filter is widely used to enhance the availability of positioning in urban areas for many intelligent transport system (ITS) applications. In the traditional Kalman filter, the GNSS measurement noise is fixed based on factors determined a priori, instead of reflecting the impact of the surrounding environment on the received GNSS signal. This has the effect of degrading position accuracy and the a posteriori quality indicators. To address this issue, we propose a new measurement noise covariance update scheme, with the adaptive indicator generated from pseudorange error prediction results, for a tightly coupled GNSS/IMU navigation system in urban areas. Specifically, the pseudorange errors are predicted by means of an ensemble bagged regression tree model accounting for signal strength, satellite elevation angle and coordinate information. The urban experimental results show that the proposed algorithm provides a 3D accuracy of 9.21 m, with an improvement of 55% and 15%, respectively, over the traditional fixed covariance extended Kalman filter (EKF)-based fusion and EKF-based fusion with pseudorange error correction.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-021-01213-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Atmospheric Sciences ; Automotive Engineering ; Covariance ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Elevation angle ; Error correction ; Extended Kalman filter ; Geophysics/Geodesy ; Global navigation satellite system ; GNSS Integrity ; Inertial platforms ; Intelligent transportation systems ; Navigation satellites ; Navigation systems ; Noise measurement ; Original Article ; Position indicators ; Regression analysis ; Regression models ; Signal strength ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Urban areas</subject><ispartof>GPS solutions, 2022, Vol.26 (1), Article 28</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f9b421a5de3b6019a7aad8328bf97546cc93fcf97a8c8a311eb9cbe4ff1fe9a13</citedby><cites>FETCH-LOGICAL-c319t-f9b421a5de3b6019a7aad8328bf97546cc93fcf97a8c8a311eb9cbe4ff1fe9a13</cites><orcidid>0000-0003-2252-9944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-021-01213-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-021-01213-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Zhang, Zixuan</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Ochieng, Washington Yotto</creatorcontrib><title>Pseudorange error prediction for adaptive tightly coupled GNSS/IMU navigation in urban areas</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>The integration of global navigation satellite systems (GNSS) and inertial measurement unit (IMU) with the Kalman filter is widely used to enhance the availability of positioning in urban areas for many intelligent transport system (ITS) applications. In the traditional Kalman filter, the GNSS measurement noise is fixed based on factors determined a priori, instead of reflecting the impact of the surrounding environment on the received GNSS signal. This has the effect of degrading position accuracy and the a posteriori quality indicators. To address this issue, we propose a new measurement noise covariance update scheme, with the adaptive indicator generated from pseudorange error prediction results, for a tightly coupled GNSS/IMU navigation system in urban areas. Specifically, the pseudorange errors are predicted by means of an ensemble bagged regression tree model accounting for signal strength, satellite elevation angle and coordinate information. The urban experimental results show that the proposed algorithm provides a 3D accuracy of 9.21 m, with an improvement of 55% and 15%, respectively, over the traditional fixed covariance extended Kalman filter (EKF)-based fusion and EKF-based fusion with pseudorange error correction.</description><subject>Algorithms</subject><subject>Atmospheric Sciences</subject><subject>Automotive Engineering</subject><subject>Covariance</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Elevation angle</subject><subject>Error correction</subject><subject>Extended Kalman filter</subject><subject>Geophysics/Geodesy</subject><subject>Global navigation satellite system</subject><subject>GNSS Integrity</subject><subject>Inertial platforms</subject><subject>Intelligent transportation systems</subject><subject>Navigation satellites</subject><subject>Navigation systems</subject><subject>Noise measurement</subject><subject>Original Article</subject><subject>Position indicators</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Signal strength</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Urban areas</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1LAzEQxRdRsFb_AU8Bz2szyX4kRylaC_UDam9CmM0mdUvdXZPdQvvXG7uCNw_DzIP33sAviq6B3gKl-cQDZRJiysIAAx4fTqIRpEGCENlpuKmgccpzeh5deL-hlFEpk1H0_upNXzYO67UhxrnGkdaZstJd1dTEBokltl21M6Sr1h_ddk9007dbU5LZ83I5mT-tSI27ao3HQFWT3hVYE3QG_WV0ZnHrzdXvHkerh_u36WO8eJnNp3eLWHOQXWxlkTDAtDS8yChIzBFLwZkorMzTJNNacqvDjUIL5ACmkLowibVgjUTg4-hm6G1d89Ub36lN07s6vFQsgwBIiCQJLja4tGu8d8aq1lWf6PYKqPqhqAaKKlBUR4rqEEJ8CPlgDozcX_U_qW-Cenb4</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sun, Rui</creator><creator>Zhang, Zixuan</creator><creator>Cheng, Qi</creator><creator>Ochieng, Washington Yotto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2252-9944</orcidid></search><sort><creationdate>2022</creationdate><title>Pseudorange error prediction for adaptive tightly coupled GNSS/IMU navigation in urban areas</title><author>Sun, Rui ; Zhang, Zixuan ; Cheng, Qi ; Ochieng, Washington Yotto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f9b421a5de3b6019a7aad8328bf97546cc93fcf97a8c8a311eb9cbe4ff1fe9a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Atmospheric Sciences</topic><topic>Automotive Engineering</topic><topic>Covariance</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Elevation angle</topic><topic>Error correction</topic><topic>Extended Kalman filter</topic><topic>Geophysics/Geodesy</topic><topic>Global navigation satellite system</topic><topic>GNSS Integrity</topic><topic>Inertial platforms</topic><topic>Intelligent transportation systems</topic><topic>Navigation satellites</topic><topic>Navigation systems</topic><topic>Noise measurement</topic><topic>Original Article</topic><topic>Position indicators</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Signal strength</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Zhang, Zixuan</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Ochieng, Washington Yotto</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Rui</au><au>Zhang, Zixuan</au><au>Cheng, Qi</au><au>Ochieng, Washington Yotto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudorange error prediction for adaptive tightly coupled GNSS/IMU navigation in urban areas</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2022</date><risdate>2022</risdate><volume>26</volume><issue>1</issue><artnum>28</artnum><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>The integration of global navigation satellite systems (GNSS) and inertial measurement unit (IMU) with the Kalman filter is widely used to enhance the availability of positioning in urban areas for many intelligent transport system (ITS) applications. In the traditional Kalman filter, the GNSS measurement noise is fixed based on factors determined a priori, instead of reflecting the impact of the surrounding environment on the received GNSS signal. This has the effect of degrading position accuracy and the a posteriori quality indicators. To address this issue, we propose a new measurement noise covariance update scheme, with the adaptive indicator generated from pseudorange error prediction results, for a tightly coupled GNSS/IMU navigation system in urban areas. Specifically, the pseudorange errors are predicted by means of an ensemble bagged regression tree model accounting for signal strength, satellite elevation angle and coordinate information. The urban experimental results show that the proposed algorithm provides a 3D accuracy of 9.21 m, with an improvement of 55% and 15%, respectively, over the traditional fixed covariance extended Kalman filter (EKF)-based fusion and EKF-based fusion with pseudorange error correction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-021-01213-z</doi><orcidid>https://orcid.org/0000-0003-2252-9944</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1080-5370
ispartof GPS solutions, 2022, Vol.26 (1), Article 28
issn 1080-5370
1521-1886
language eng
recordid cdi_proquest_journals_2611008844
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Atmospheric Sciences
Automotive Engineering
Covariance
Earth and Environmental Science
Earth Sciences
Electrical Engineering
Elevation angle
Error correction
Extended Kalman filter
Geophysics/Geodesy
Global navigation satellite system
GNSS Integrity
Inertial platforms
Intelligent transportation systems
Navigation satellites
Navigation systems
Noise measurement
Original Article
Position indicators
Regression analysis
Regression models
Signal strength
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Urban areas
title Pseudorange error prediction for adaptive tightly coupled GNSS/IMU navigation in urban areas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudorange%20error%20prediction%20for%20adaptive%20tightly%20coupled%20GNSS/IMU%20navigation%20in%20urban%20areas&rft.jtitle=GPS%20solutions&rft.au=Sun,%20Rui&rft.date=2022&rft.volume=26&rft.issue=1&rft.artnum=28&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-021-01213-z&rft_dat=%3Cproquest_cross%3E2611008844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611008844&rft_id=info:pmid/&rfr_iscdi=true