Atrous cGAN for SAR to Optical Image Translation

Conditional (cGAN)-based methods proposed so far for synthetic aperture radar (SAR)-to-optical image synthesis tend to produce noisy and unsharp optical outcomes. In this work, we propose the atrous-cGAN, a novel cGAN architecture that improves the SAR-to-optical image translation. The proposed gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Noa Turnes, Javier, Castro, Jose David Bermudez, Torres, Daliana Lobo, Vega, Pedro Juan Soto, Feitosa, Raul Queiroz, Happ, Patrick N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Noa Turnes, Javier
Castro, Jose David Bermudez
Torres, Daliana Lobo
Vega, Pedro Juan Soto
Feitosa, Raul Queiroz
Happ, Patrick N.
description Conditional (cGAN)-based methods proposed so far for synthetic aperture radar (SAR)-to-optical image synthesis tend to produce noisy and unsharp optical outcomes. In this work, we propose the atrous-cGAN, a novel cGAN architecture that improves the SAR-to-optical image translation. The proposed generator and discriminator networks rely on atrous convolutions and incorporate an atrous spatial pyramid pooling (ASPP) module to enhance fine details in the generated optical image by exploiting spatial context at multiple scales. This letter reports experiments carried out to assess the performance of atrous-cGAN for the synthesis of Landsat-8 images from Sentinel-1A data based on three public data sets. The experimental analysis indicated that the atrous-cGAN consistently outperformed the classical pix2pix counterpart in terms of visual quality, similar to the true optical image, and as a feature learning tool for semantic segmentation.
doi_str_mv 10.1109/LGRS.2020.3031199
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2610990333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9241239</ieee_id><sourcerecordid>2610990333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-e8b8a3a9beca7b94477d210d96779ec4f8d642fc5b61ead45a7d2804590bb2023</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwEPG-d_Nskx6XoWigW2greQjablS3bpibbg9_eXVqcywzMezO8H0KPBGaEgH5ZluvNjAKFGQNGiNZXaEKEUBkISa7HmYtMaPV1i-5S2gFQrpScICj6GE4Ju7L4wE2IeFOscR_w6ti3znZ4sbffHm-jPaTO9m043KObxnbJP1z6FH2-vW7n79lyVS7mxTJzHGifeVUpy6yuvLOy0pxLWVMCtc6l1N7xRtU5p40TVU68rbmww14BFxqqasjBpuj5fPcYw8_Jp97swikehpeG5kNiDWyoKSJnlYshpegbc4zt3sZfQ8CMYMwIxoxgzAXM4Hk6e1rv_b9eU04o0-wPYZVcsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610990333</pqid></control><display><type>article</type><title>Atrous cGAN for SAR to Optical Image Translation</title><source>IEEE Electronic Library (IEL)</source><creator>Noa Turnes, Javier ; Castro, Jose David Bermudez ; Torres, Daliana Lobo ; Vega, Pedro Juan Soto ; Feitosa, Raul Queiroz ; Happ, Patrick N.</creator><creatorcontrib>Noa Turnes, Javier ; Castro, Jose David Bermudez ; Torres, Daliana Lobo ; Vega, Pedro Juan Soto ; Feitosa, Raul Queiroz ; Happ, Patrick N.</creatorcontrib><description>Conditional (cGAN)-based methods proposed so far for synthetic aperture radar (SAR)-to-optical image synthesis tend to produce noisy and unsharp optical outcomes. In this work, we propose the atrous-cGAN, a novel cGAN architecture that improves the SAR-to-optical image translation. The proposed generator and discriminator networks rely on atrous convolutions and incorporate an atrous spatial pyramid pooling (ASPP) module to enhance fine details in the generated optical image by exploiting spatial context at multiple scales. This letter reports experiments carried out to assess the performance of atrous-cGAN for the synthesis of Landsat-8 images from Sentinel-1A data based on three public data sets. The experimental analysis indicated that the atrous-cGAN consistently outperformed the classical pix2pix counterpart in terms of visual quality, similar to the true optical image, and as a feature learning tool for semantic segmentation.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2020.3031199</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial satellites ; Atrous spatial pyramid pooling (ASPP) ; Convolutional codes ; generative adversarial networks ; Generators ; Image enhancement ; Image quality ; Image segmentation ; Landsat ; Optical imaging ; Optical interferometry ; Optical sensors ; Performance assessment ; Radar imaging ; Remote sensing ; SAR (radar) ; Satellite imagery ; Synthesis ; Synthetic aperture radar ; synthetic aperture radar (SAR)-optical synthesis ; Translation</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-e8b8a3a9beca7b94477d210d96779ec4f8d642fc5b61ead45a7d2804590bb2023</citedby><cites>FETCH-LOGICAL-c402t-e8b8a3a9beca7b94477d210d96779ec4f8d642fc5b61ead45a7d2804590bb2023</cites><orcidid>0000-0001-9573-2228 ; 0000-0001-8344-5096 ; 0000-0002-4516-5787 ; 0000-0001-7916-9463 ; 0000-0001-5396-8531 ; 0000-0003-3280-5471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9241239$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9241239$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Noa Turnes, Javier</creatorcontrib><creatorcontrib>Castro, Jose David Bermudez</creatorcontrib><creatorcontrib>Torres, Daliana Lobo</creatorcontrib><creatorcontrib>Vega, Pedro Juan Soto</creatorcontrib><creatorcontrib>Feitosa, Raul Queiroz</creatorcontrib><creatorcontrib>Happ, Patrick N.</creatorcontrib><title>Atrous cGAN for SAR to Optical Image Translation</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Conditional (cGAN)-based methods proposed so far for synthetic aperture radar (SAR)-to-optical image synthesis tend to produce noisy and unsharp optical outcomes. In this work, we propose the atrous-cGAN, a novel cGAN architecture that improves the SAR-to-optical image translation. The proposed generator and discriminator networks rely on atrous convolutions and incorporate an atrous spatial pyramid pooling (ASPP) module to enhance fine details in the generated optical image by exploiting spatial context at multiple scales. This letter reports experiments carried out to assess the performance of atrous-cGAN for the synthesis of Landsat-8 images from Sentinel-1A data based on three public data sets. The experimental analysis indicated that the atrous-cGAN consistently outperformed the classical pix2pix counterpart in terms of visual quality, similar to the true optical image, and as a feature learning tool for semantic segmentation.</description><subject>Artificial satellites</subject><subject>Atrous spatial pyramid pooling (ASPP)</subject><subject>Convolutional codes</subject><subject>generative adversarial networks</subject><subject>Generators</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Landsat</subject><subject>Optical imaging</subject><subject>Optical interferometry</subject><subject>Optical sensors</subject><subject>Performance assessment</subject><subject>Radar imaging</subject><subject>Remote sensing</subject><subject>SAR (radar)</subject><subject>Satellite imagery</subject><subject>Synthesis</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)-optical synthesis</subject><subject>Translation</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwEPG-d_Nskx6XoWigW2greQjablS3bpibbg9_eXVqcywzMezO8H0KPBGaEgH5ZluvNjAKFGQNGiNZXaEKEUBkISa7HmYtMaPV1i-5S2gFQrpScICj6GE4Ju7L4wE2IeFOscR_w6ti3znZ4sbffHm-jPaTO9m043KObxnbJP1z6FH2-vW7n79lyVS7mxTJzHGifeVUpy6yuvLOy0pxLWVMCtc6l1N7xRtU5p40TVU68rbmww14BFxqqasjBpuj5fPcYw8_Jp97swikehpeG5kNiDWyoKSJnlYshpegbc4zt3sZfQ8CMYMwIxoxgzAXM4Hk6e1rv_b9eU04o0-wPYZVcsw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Noa Turnes, Javier</creator><creator>Castro, Jose David Bermudez</creator><creator>Torres, Daliana Lobo</creator><creator>Vega, Pedro Juan Soto</creator><creator>Feitosa, Raul Queiroz</creator><creator>Happ, Patrick N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9573-2228</orcidid><orcidid>https://orcid.org/0000-0001-8344-5096</orcidid><orcidid>https://orcid.org/0000-0002-4516-5787</orcidid><orcidid>https://orcid.org/0000-0001-7916-9463</orcidid><orcidid>https://orcid.org/0000-0001-5396-8531</orcidid><orcidid>https://orcid.org/0000-0003-3280-5471</orcidid></search><sort><creationdate>2022</creationdate><title>Atrous cGAN for SAR to Optical Image Translation</title><author>Noa Turnes, Javier ; Castro, Jose David Bermudez ; Torres, Daliana Lobo ; Vega, Pedro Juan Soto ; Feitosa, Raul Queiroz ; Happ, Patrick N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-e8b8a3a9beca7b94477d210d96779ec4f8d642fc5b61ead45a7d2804590bb2023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial satellites</topic><topic>Atrous spatial pyramid pooling (ASPP)</topic><topic>Convolutional codes</topic><topic>generative adversarial networks</topic><topic>Generators</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Landsat</topic><topic>Optical imaging</topic><topic>Optical interferometry</topic><topic>Optical sensors</topic><topic>Performance assessment</topic><topic>Radar imaging</topic><topic>Remote sensing</topic><topic>SAR (radar)</topic><topic>Satellite imagery</topic><topic>Synthesis</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)-optical synthesis</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noa Turnes, Javier</creatorcontrib><creatorcontrib>Castro, Jose David Bermudez</creatorcontrib><creatorcontrib>Torres, Daliana Lobo</creatorcontrib><creatorcontrib>Vega, Pedro Juan Soto</creatorcontrib><creatorcontrib>Feitosa, Raul Queiroz</creatorcontrib><creatorcontrib>Happ, Patrick N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Noa Turnes, Javier</au><au>Castro, Jose David Bermudez</au><au>Torres, Daliana Lobo</au><au>Vega, Pedro Juan Soto</au><au>Feitosa, Raul Queiroz</au><au>Happ, Patrick N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atrous cGAN for SAR to Optical Image Translation</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Conditional (cGAN)-based methods proposed so far for synthetic aperture radar (SAR)-to-optical image synthesis tend to produce noisy and unsharp optical outcomes. In this work, we propose the atrous-cGAN, a novel cGAN architecture that improves the SAR-to-optical image translation. The proposed generator and discriminator networks rely on atrous convolutions and incorporate an atrous spatial pyramid pooling (ASPP) module to enhance fine details in the generated optical image by exploiting spatial context at multiple scales. This letter reports experiments carried out to assess the performance of atrous-cGAN for the synthesis of Landsat-8 images from Sentinel-1A data based on three public data sets. The experimental analysis indicated that the atrous-cGAN consistently outperformed the classical pix2pix counterpart in terms of visual quality, similar to the true optical image, and as a feature learning tool for semantic segmentation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2020.3031199</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9573-2228</orcidid><orcidid>https://orcid.org/0000-0001-8344-5096</orcidid><orcidid>https://orcid.org/0000-0002-4516-5787</orcidid><orcidid>https://orcid.org/0000-0001-7916-9463</orcidid><orcidid>https://orcid.org/0000-0001-5396-8531</orcidid><orcidid>https://orcid.org/0000-0003-3280-5471</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_2610990333
source IEEE Electronic Library (IEL)
subjects Artificial satellites
Atrous spatial pyramid pooling (ASPP)
Convolutional codes
generative adversarial networks
Generators
Image enhancement
Image quality
Image segmentation
Landsat
Optical imaging
Optical interferometry
Optical sensors
Performance assessment
Radar imaging
Remote sensing
SAR (radar)
Satellite imagery
Synthesis
Synthetic aperture radar
synthetic aperture radar (SAR)-optical synthesis
Translation
title Atrous cGAN for SAR to Optical Image Translation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atrous%20cGAN%20for%20SAR%20to%20Optical%20Image%20Translation&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Noa%20Turnes,%20Javier&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2020.3031199&rft_dat=%3Cproquest_RIE%3E2610990333%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610990333&rft_id=info:pmid/&rft_ieee_id=9241239&rfr_iscdi=true