Numerical Simulation Study on Gain Nonlinearity of Microchannel Plate in Photomultiplier Tube
Microchannel plate-photomultiplier tubes (MCP-PMTs) with high dynamic ranges and strong outputs are still challenges for the future inertial confinement fusion (ICF) studies, aiming at detecting the large-scale intensities of the radiation pulses. In this article, to investigate the influence factor...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2021-12, Vol.68 (12), p.2711-2716 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2716 |
---|---|
container_issue | 12 |
container_start_page | 2711 |
container_title | IEEE transactions on nuclear science |
container_volume | 68 |
creator | Guo, Lehui Chen, Ping Li, Lili Gou, Yongsheng Liu, Hulin Liu, Ziyu Xin, Liwei Tian, Jinshou |
description | Microchannel plate-photomultiplier tubes (MCP-PMTs) with high dynamic ranges and strong outputs are still challenges for the future inertial confinement fusion (ICF) studies, aiming at detecting the large-scale intensities of the radiation pulses. In this article, to investigate the influence factors of the gain nonlinearity causing high-linearity limits of the MCP-PMTs, 3-D microchannel plate (MCP) channel models were built in computer simulation technology (CST) Particle Studio. The Monte Carlo and particle-in-cell methods were carried out to simulate the electron cascade processes in the channels of the MCPs. The dependences of MCP gain nonlinearity on the number of incident electrons, operating voltage, and secondary electron emission (SEE) yield properties were studied. The gains obtained by the simulations for the conventional one-stage and two-stage MCPs are in good agreement with the available experimental data, which verifies the reliabilities of the 3-D MCP models. The simulation results show that the gain of the MCP single channel decreases as the number of incident electrons increases due to the space charge effects. The higher the operating voltage and SEE yield of the MCP, the faster the gain deteriorates. To mitigate the gain saturation effect of MCP single channels, a novel structural design of MCP-PMTs has been proposed by adjusting the design of the MCP chevron pair. A significant improvement in the output pulse peak can be obtained. |
doi_str_mv | 10.1109/TNS.2021.3121583 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2610984465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9580882</ieee_id><sourcerecordid>2610984465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-34a041ed6f722b7413a711377097947643a19c4c92e6ae74b2ba2dd40567bfa93</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZMPjbJUYpWQWuh9Sghu52lKdvdmt099L83pcXTfPDem-FHyD2wCQCzT6v5csIZh4kADsqICzICpUwGSptLMmIMTGaltdfkpuu2aZSKqRH5mQ87jKH0NV2G3VD7PrQNXfbD-kBTM_OhofO2qUODPoY-LSv6GcrYlhvfNFjTRbIgTarFpu3blNCHfR0w0tVQ4C25qnzd4d25jsn368tq-pZ9fM3ep88fWckt9JmQnknAdV5pzgstQXgNILRmVlupcyk82FKWlmPuUcuCF56v15KpXBeVt2JMHk-5-9j-Dtj1btsOsUknHc8THSNlrpKKnVTp_a6LWLl9DDsfDw6YO0J0CaI7QnRniMnycLIERPyXW2WYMVz8AZu8bUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610984465</pqid></control><display><type>article</type><title>Numerical Simulation Study on Gain Nonlinearity of Microchannel Plate in Photomultiplier Tube</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Lehui ; Chen, Ping ; Li, Lili ; Gou, Yongsheng ; Liu, Hulin ; Liu, Ziyu ; Xin, Liwei ; Tian, Jinshou</creator><creatorcontrib>Guo, Lehui ; Chen, Ping ; Li, Lili ; Gou, Yongsheng ; Liu, Hulin ; Liu, Ziyu ; Xin, Liwei ; Tian, Jinshou</creatorcontrib><description>Microchannel plate-photomultiplier tubes (MCP-PMTs) with high dynamic ranges and strong outputs are still challenges for the future inertial confinement fusion (ICF) studies, aiming at detecting the large-scale intensities of the radiation pulses. In this article, to investigate the influence factors of the gain nonlinearity causing high-linearity limits of the MCP-PMTs, 3-D microchannel plate (MCP) channel models were built in computer simulation technology (CST) Particle Studio. The Monte Carlo and particle-in-cell methods were carried out to simulate the electron cascade processes in the channels of the MCPs. The dependences of MCP gain nonlinearity on the number of incident electrons, operating voltage, and secondary electron emission (SEE) yield properties were studied. The gains obtained by the simulations for the conventional one-stage and two-stage MCPs are in good agreement with the available experimental data, which verifies the reliabilities of the 3-D MCP models. The simulation results show that the gain of the MCP single channel decreases as the number of incident electrons increases due to the space charge effects. The higher the operating voltage and SEE yield of the MCP, the faster the gain deteriorates. To mitigate the gain saturation effect of MCP single channels, a novel structural design of MCP-PMTs has been proposed by adjusting the design of the MCP chevron pair. A significant improvement in the output pulse peak can be obtained.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2021.3121583</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Dynamic range ; Electric potential ; Electron emission ; Electrons ; Emission analysis ; Gain nonlinearity ; Inertial confinement fusion ; Mathematical models ; microchannel plate (MCP) ; Microchannel plates ; Microchannels ; Monitoring ; Monte Carlo methods ; Monte Carlo simulation ; Nonlinear systems ; Nonlinearity ; Numerical simulation ; Particle in cell technique ; Photomultiplier tubes ; Photomultipliers ; Space charge ; Structural design ; Structural engineering ; Three dimensional models ; Three-dimensional displays ; Voltage</subject><ispartof>IEEE transactions on nuclear science, 2021-12, Vol.68 (12), p.2711-2716</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-34a041ed6f722b7413a711377097947643a19c4c92e6ae74b2ba2dd40567bfa93</citedby><cites>FETCH-LOGICAL-c291t-34a041ed6f722b7413a711377097947643a19c4c92e6ae74b2ba2dd40567bfa93</cites><orcidid>0000-0002-7869-3738 ; 0000-0002-0603-9753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9580882$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9580882$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Lehui</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Li, Lili</creatorcontrib><creatorcontrib>Gou, Yongsheng</creatorcontrib><creatorcontrib>Liu, Hulin</creatorcontrib><creatorcontrib>Liu, Ziyu</creatorcontrib><creatorcontrib>Xin, Liwei</creatorcontrib><creatorcontrib>Tian, Jinshou</creatorcontrib><title>Numerical Simulation Study on Gain Nonlinearity of Microchannel Plate in Photomultiplier Tube</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Microchannel plate-photomultiplier tubes (MCP-PMTs) with high dynamic ranges and strong outputs are still challenges for the future inertial confinement fusion (ICF) studies, aiming at detecting the large-scale intensities of the radiation pulses. In this article, to investigate the influence factors of the gain nonlinearity causing high-linearity limits of the MCP-PMTs, 3-D microchannel plate (MCP) channel models were built in computer simulation technology (CST) Particle Studio. The Monte Carlo and particle-in-cell methods were carried out to simulate the electron cascade processes in the channels of the MCPs. The dependences of MCP gain nonlinearity on the number of incident electrons, operating voltage, and secondary electron emission (SEE) yield properties were studied. The gains obtained by the simulations for the conventional one-stage and two-stage MCPs are in good agreement with the available experimental data, which verifies the reliabilities of the 3-D MCP models. The simulation results show that the gain of the MCP single channel decreases as the number of incident electrons increases due to the space charge effects. The higher the operating voltage and SEE yield of the MCP, the faster the gain deteriorates. To mitigate the gain saturation effect of MCP single channels, a novel structural design of MCP-PMTs has been proposed by adjusting the design of the MCP chevron pair. A significant improvement in the output pulse peak can be obtained.</description><subject>Computer simulation</subject><subject>Dynamic range</subject><subject>Electric potential</subject><subject>Electron emission</subject><subject>Electrons</subject><subject>Emission analysis</subject><subject>Gain nonlinearity</subject><subject>Inertial confinement fusion</subject><subject>Mathematical models</subject><subject>microchannel plate (MCP)</subject><subject>Microchannel plates</subject><subject>Microchannels</subject><subject>Monitoring</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Numerical simulation</subject><subject>Particle in cell technique</subject><subject>Photomultiplier tubes</subject><subject>Photomultipliers</subject><subject>Space charge</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Voltage</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZMPjbJUYpWQWuh9Sghu52lKdvdmt099L83pcXTfPDem-FHyD2wCQCzT6v5csIZh4kADsqICzICpUwGSptLMmIMTGaltdfkpuu2aZSKqRH5mQ87jKH0NV2G3VD7PrQNXfbD-kBTM_OhofO2qUODPoY-LSv6GcrYlhvfNFjTRbIgTarFpu3blNCHfR0w0tVQ4C25qnzd4d25jsn368tq-pZ9fM3ep88fWckt9JmQnknAdV5pzgstQXgNILRmVlupcyk82FKWlmPuUcuCF56v15KpXBeVt2JMHk-5-9j-Dtj1btsOsUknHc8THSNlrpKKnVTp_a6LWLl9DDsfDw6YO0J0CaI7QnRniMnycLIERPyXW2WYMVz8AZu8bUs</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Guo, Lehui</creator><creator>Chen, Ping</creator><creator>Li, Lili</creator><creator>Gou, Yongsheng</creator><creator>Liu, Hulin</creator><creator>Liu, Ziyu</creator><creator>Xin, Liwei</creator><creator>Tian, Jinshou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-7869-3738</orcidid><orcidid>https://orcid.org/0000-0002-0603-9753</orcidid></search><sort><creationdate>20211201</creationdate><title>Numerical Simulation Study on Gain Nonlinearity of Microchannel Plate in Photomultiplier Tube</title><author>Guo, Lehui ; Chen, Ping ; Li, Lili ; Gou, Yongsheng ; Liu, Hulin ; Liu, Ziyu ; Xin, Liwei ; Tian, Jinshou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-34a041ed6f722b7413a711377097947643a19c4c92e6ae74b2ba2dd40567bfa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer simulation</topic><topic>Dynamic range</topic><topic>Electric potential</topic><topic>Electron emission</topic><topic>Electrons</topic><topic>Emission analysis</topic><topic>Gain nonlinearity</topic><topic>Inertial confinement fusion</topic><topic>Mathematical models</topic><topic>microchannel plate (MCP)</topic><topic>Microchannel plates</topic><topic>Microchannels</topic><topic>Monitoring</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Numerical simulation</topic><topic>Particle in cell technique</topic><topic>Photomultiplier tubes</topic><topic>Photomultipliers</topic><topic>Space charge</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Lehui</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Li, Lili</creatorcontrib><creatorcontrib>Gou, Yongsheng</creatorcontrib><creatorcontrib>Liu, Hulin</creatorcontrib><creatorcontrib>Liu, Ziyu</creatorcontrib><creatorcontrib>Xin, Liwei</creatorcontrib><creatorcontrib>Tian, Jinshou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Lehui</au><au>Chen, Ping</au><au>Li, Lili</au><au>Gou, Yongsheng</au><au>Liu, Hulin</au><au>Liu, Ziyu</au><au>Xin, Liwei</au><au>Tian, Jinshou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation Study on Gain Nonlinearity of Microchannel Plate in Photomultiplier Tube</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>68</volume><issue>12</issue><spage>2711</spage><epage>2716</epage><pages>2711-2716</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Microchannel plate-photomultiplier tubes (MCP-PMTs) with high dynamic ranges and strong outputs are still challenges for the future inertial confinement fusion (ICF) studies, aiming at detecting the large-scale intensities of the radiation pulses. In this article, to investigate the influence factors of the gain nonlinearity causing high-linearity limits of the MCP-PMTs, 3-D microchannel plate (MCP) channel models were built in computer simulation technology (CST) Particle Studio. The Monte Carlo and particle-in-cell methods were carried out to simulate the electron cascade processes in the channels of the MCPs. The dependences of MCP gain nonlinearity on the number of incident electrons, operating voltage, and secondary electron emission (SEE) yield properties were studied. The gains obtained by the simulations for the conventional one-stage and two-stage MCPs are in good agreement with the available experimental data, which verifies the reliabilities of the 3-D MCP models. The simulation results show that the gain of the MCP single channel decreases as the number of incident electrons increases due to the space charge effects. The higher the operating voltage and SEE yield of the MCP, the faster the gain deteriorates. To mitigate the gain saturation effect of MCP single channels, a novel structural design of MCP-PMTs has been proposed by adjusting the design of the MCP chevron pair. A significant improvement in the output pulse peak can be obtained.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2021.3121583</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7869-3738</orcidid><orcidid>https://orcid.org/0000-0002-0603-9753</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2021-12, Vol.68 (12), p.2711-2716 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_2610984465 |
source | IEEE Electronic Library (IEL) |
subjects | Computer simulation Dynamic range Electric potential Electron emission Electrons Emission analysis Gain nonlinearity Inertial confinement fusion Mathematical models microchannel plate (MCP) Microchannel plates Microchannels Monitoring Monte Carlo methods Monte Carlo simulation Nonlinear systems Nonlinearity Numerical simulation Particle in cell technique Photomultiplier tubes Photomultipliers Space charge Structural design Structural engineering Three dimensional models Three-dimensional displays Voltage |
title | Numerical Simulation Study on Gain Nonlinearity of Microchannel Plate in Photomultiplier Tube |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20Study%20on%20Gain%20Nonlinearity%20of%20Microchannel%20Plate%20in%20Photomultiplier%20Tube&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Guo,%20Lehui&rft.date=2021-12-01&rft.volume=68&rft.issue=12&rft.spage=2711&rft.epage=2716&rft.pages=2711-2716&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2021.3121583&rft_dat=%3Cproquest_RIE%3E2610984465%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610984465&rft_id=info:pmid/&rft_ieee_id=9580882&rfr_iscdi=true |