Numerical Simulation Study on Gain Nonlinearity of Microchannel Plate in Photomultiplier Tube

Microchannel plate-photomultiplier tubes (MCP-PMTs) with high dynamic ranges and strong outputs are still challenges for the future inertial confinement fusion (ICF) studies, aiming at detecting the large-scale intensities of the radiation pulses. In this article, to investigate the influence factor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2021-12, Vol.68 (12), p.2711-2716
Hauptverfasser: Guo, Lehui, Chen, Ping, Li, Lili, Gou, Yongsheng, Liu, Hulin, Liu, Ziyu, Xin, Liwei, Tian, Jinshou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2716
container_issue 12
container_start_page 2711
container_title IEEE transactions on nuclear science
container_volume 68
creator Guo, Lehui
Chen, Ping
Li, Lili
Gou, Yongsheng
Liu, Hulin
Liu, Ziyu
Xin, Liwei
Tian, Jinshou
description Microchannel plate-photomultiplier tubes (MCP-PMTs) with high dynamic ranges and strong outputs are still challenges for the future inertial confinement fusion (ICF) studies, aiming at detecting the large-scale intensities of the radiation pulses. In this article, to investigate the influence factors of the gain nonlinearity causing high-linearity limits of the MCP-PMTs, 3-D microchannel plate (MCP) channel models were built in computer simulation technology (CST) Particle Studio. The Monte Carlo and particle-in-cell methods were carried out to simulate the electron cascade processes in the channels of the MCPs. The dependences of MCP gain nonlinearity on the number of incident electrons, operating voltage, and secondary electron emission (SEE) yield properties were studied. The gains obtained by the simulations for the conventional one-stage and two-stage MCPs are in good agreement with the available experimental data, which verifies the reliabilities of the 3-D MCP models. The simulation results show that the gain of the MCP single channel decreases as the number of incident electrons increases due to the space charge effects. The higher the operating voltage and SEE yield of the MCP, the faster the gain deteriorates. To mitigate the gain saturation effect of MCP single channels, a novel structural design of MCP-PMTs has been proposed by adjusting the design of the MCP chevron pair. A significant improvement in the output pulse peak can be obtained.
doi_str_mv 10.1109/TNS.2021.3121583
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2610984465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9580882</ieee_id><sourcerecordid>2610984465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-34a041ed6f722b7413a711377097947643a19c4c92e6ae74b2ba2dd40567bfa93</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZMPjbJUYpWQWuh9Sghu52lKdvdmt099L83pcXTfPDem-FHyD2wCQCzT6v5csIZh4kADsqICzICpUwGSptLMmIMTGaltdfkpuu2aZSKqRH5mQ87jKH0NV2G3VD7PrQNXfbD-kBTM_OhofO2qUODPoY-LSv6GcrYlhvfNFjTRbIgTarFpu3blNCHfR0w0tVQ4C25qnzd4d25jsn368tq-pZ9fM3ep88fWckt9JmQnknAdV5pzgstQXgNILRmVlupcyk82FKWlmPuUcuCF56v15KpXBeVt2JMHk-5-9j-Dtj1btsOsUknHc8THSNlrpKKnVTp_a6LWLl9DDsfDw6YO0J0CaI7QnRniMnycLIERPyXW2WYMVz8AZu8bUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610984465</pqid></control><display><type>article</type><title>Numerical Simulation Study on Gain Nonlinearity of Microchannel Plate in Photomultiplier Tube</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Lehui ; Chen, Ping ; Li, Lili ; Gou, Yongsheng ; Liu, Hulin ; Liu, Ziyu ; Xin, Liwei ; Tian, Jinshou</creator><creatorcontrib>Guo, Lehui ; Chen, Ping ; Li, Lili ; Gou, Yongsheng ; Liu, Hulin ; Liu, Ziyu ; Xin, Liwei ; Tian, Jinshou</creatorcontrib><description>Microchannel plate-photomultiplier tubes (MCP-PMTs) with high dynamic ranges and strong outputs are still challenges for the future inertial confinement fusion (ICF) studies, aiming at detecting the large-scale intensities of the radiation pulses. In this article, to investigate the influence factors of the gain nonlinearity causing high-linearity limits of the MCP-PMTs, 3-D microchannel plate (MCP) channel models were built in computer simulation technology (CST) Particle Studio. The Monte Carlo and particle-in-cell methods were carried out to simulate the electron cascade processes in the channels of the MCPs. The dependences of MCP gain nonlinearity on the number of incident electrons, operating voltage, and secondary electron emission (SEE) yield properties were studied. The gains obtained by the simulations for the conventional one-stage and two-stage MCPs are in good agreement with the available experimental data, which verifies the reliabilities of the 3-D MCP models. The simulation results show that the gain of the MCP single channel decreases as the number of incident electrons increases due to the space charge effects. The higher the operating voltage and SEE yield of the MCP, the faster the gain deteriorates. To mitigate the gain saturation effect of MCP single channels, a novel structural design of MCP-PMTs has been proposed by adjusting the design of the MCP chevron pair. A significant improvement in the output pulse peak can be obtained.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2021.3121583</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Dynamic range ; Electric potential ; Electron emission ; Electrons ; Emission analysis ; Gain nonlinearity ; Inertial confinement fusion ; Mathematical models ; microchannel plate (MCP) ; Microchannel plates ; Microchannels ; Monitoring ; Monte Carlo methods ; Monte Carlo simulation ; Nonlinear systems ; Nonlinearity ; Numerical simulation ; Particle in cell technique ; Photomultiplier tubes ; Photomultipliers ; Space charge ; Structural design ; Structural engineering ; Three dimensional models ; Three-dimensional displays ; Voltage</subject><ispartof>IEEE transactions on nuclear science, 2021-12, Vol.68 (12), p.2711-2716</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-34a041ed6f722b7413a711377097947643a19c4c92e6ae74b2ba2dd40567bfa93</citedby><cites>FETCH-LOGICAL-c291t-34a041ed6f722b7413a711377097947643a19c4c92e6ae74b2ba2dd40567bfa93</cites><orcidid>0000-0002-7869-3738 ; 0000-0002-0603-9753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9580882$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9580882$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Lehui</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Li, Lili</creatorcontrib><creatorcontrib>Gou, Yongsheng</creatorcontrib><creatorcontrib>Liu, Hulin</creatorcontrib><creatorcontrib>Liu, Ziyu</creatorcontrib><creatorcontrib>Xin, Liwei</creatorcontrib><creatorcontrib>Tian, Jinshou</creatorcontrib><title>Numerical Simulation Study on Gain Nonlinearity of Microchannel Plate in Photomultiplier Tube</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Microchannel plate-photomultiplier tubes (MCP-PMTs) with high dynamic ranges and strong outputs are still challenges for the future inertial confinement fusion (ICF) studies, aiming at detecting the large-scale intensities of the radiation pulses. In this article, to investigate the influence factors of the gain nonlinearity causing high-linearity limits of the MCP-PMTs, 3-D microchannel plate (MCP) channel models were built in computer simulation technology (CST) Particle Studio. The Monte Carlo and particle-in-cell methods were carried out to simulate the electron cascade processes in the channels of the MCPs. The dependences of MCP gain nonlinearity on the number of incident electrons, operating voltage, and secondary electron emission (SEE) yield properties were studied. The gains obtained by the simulations for the conventional one-stage and two-stage MCPs are in good agreement with the available experimental data, which verifies the reliabilities of the 3-D MCP models. The simulation results show that the gain of the MCP single channel decreases as the number of incident electrons increases due to the space charge effects. The higher the operating voltage and SEE yield of the MCP, the faster the gain deteriorates. To mitigate the gain saturation effect of MCP single channels, a novel structural design of MCP-PMTs has been proposed by adjusting the design of the MCP chevron pair. A significant improvement in the output pulse peak can be obtained.</description><subject>Computer simulation</subject><subject>Dynamic range</subject><subject>Electric potential</subject><subject>Electron emission</subject><subject>Electrons</subject><subject>Emission analysis</subject><subject>Gain nonlinearity</subject><subject>Inertial confinement fusion</subject><subject>Mathematical models</subject><subject>microchannel plate (MCP)</subject><subject>Microchannel plates</subject><subject>Microchannels</subject><subject>Monitoring</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Numerical simulation</subject><subject>Particle in cell technique</subject><subject>Photomultiplier tubes</subject><subject>Photomultipliers</subject><subject>Space charge</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Voltage</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZMPjbJUYpWQWuh9Sghu52lKdvdmt099L83pcXTfPDem-FHyD2wCQCzT6v5csIZh4kADsqICzICpUwGSptLMmIMTGaltdfkpuu2aZSKqRH5mQ87jKH0NV2G3VD7PrQNXfbD-kBTM_OhofO2qUODPoY-LSv6GcrYlhvfNFjTRbIgTarFpu3blNCHfR0w0tVQ4C25qnzd4d25jsn368tq-pZ9fM3ep88fWckt9JmQnknAdV5pzgstQXgNILRmVlupcyk82FKWlmPuUcuCF56v15KpXBeVt2JMHk-5-9j-Dtj1btsOsUknHc8THSNlrpKKnVTp_a6LWLl9DDsfDw6YO0J0CaI7QnRniMnycLIERPyXW2WYMVz8AZu8bUs</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Guo, Lehui</creator><creator>Chen, Ping</creator><creator>Li, Lili</creator><creator>Gou, Yongsheng</creator><creator>Liu, Hulin</creator><creator>Liu, Ziyu</creator><creator>Xin, Liwei</creator><creator>Tian, Jinshou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-7869-3738</orcidid><orcidid>https://orcid.org/0000-0002-0603-9753</orcidid></search><sort><creationdate>20211201</creationdate><title>Numerical Simulation Study on Gain Nonlinearity of Microchannel Plate in Photomultiplier Tube</title><author>Guo, Lehui ; Chen, Ping ; Li, Lili ; Gou, Yongsheng ; Liu, Hulin ; Liu, Ziyu ; Xin, Liwei ; Tian, Jinshou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-34a041ed6f722b7413a711377097947643a19c4c92e6ae74b2ba2dd40567bfa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer simulation</topic><topic>Dynamic range</topic><topic>Electric potential</topic><topic>Electron emission</topic><topic>Electrons</topic><topic>Emission analysis</topic><topic>Gain nonlinearity</topic><topic>Inertial confinement fusion</topic><topic>Mathematical models</topic><topic>microchannel plate (MCP)</topic><topic>Microchannel plates</topic><topic>Microchannels</topic><topic>Monitoring</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Numerical simulation</topic><topic>Particle in cell technique</topic><topic>Photomultiplier tubes</topic><topic>Photomultipliers</topic><topic>Space charge</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Lehui</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Li, Lili</creatorcontrib><creatorcontrib>Gou, Yongsheng</creatorcontrib><creatorcontrib>Liu, Hulin</creatorcontrib><creatorcontrib>Liu, Ziyu</creatorcontrib><creatorcontrib>Xin, Liwei</creatorcontrib><creatorcontrib>Tian, Jinshou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Lehui</au><au>Chen, Ping</au><au>Li, Lili</au><au>Gou, Yongsheng</au><au>Liu, Hulin</au><au>Liu, Ziyu</au><au>Xin, Liwei</au><au>Tian, Jinshou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation Study on Gain Nonlinearity of Microchannel Plate in Photomultiplier Tube</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>68</volume><issue>12</issue><spage>2711</spage><epage>2716</epage><pages>2711-2716</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Microchannel plate-photomultiplier tubes (MCP-PMTs) with high dynamic ranges and strong outputs are still challenges for the future inertial confinement fusion (ICF) studies, aiming at detecting the large-scale intensities of the radiation pulses. In this article, to investigate the influence factors of the gain nonlinearity causing high-linearity limits of the MCP-PMTs, 3-D microchannel plate (MCP) channel models were built in computer simulation technology (CST) Particle Studio. The Monte Carlo and particle-in-cell methods were carried out to simulate the electron cascade processes in the channels of the MCPs. The dependences of MCP gain nonlinearity on the number of incident electrons, operating voltage, and secondary electron emission (SEE) yield properties were studied. The gains obtained by the simulations for the conventional one-stage and two-stage MCPs are in good agreement with the available experimental data, which verifies the reliabilities of the 3-D MCP models. The simulation results show that the gain of the MCP single channel decreases as the number of incident electrons increases due to the space charge effects. The higher the operating voltage and SEE yield of the MCP, the faster the gain deteriorates. To mitigate the gain saturation effect of MCP single channels, a novel structural design of MCP-PMTs has been proposed by adjusting the design of the MCP chevron pair. A significant improvement in the output pulse peak can be obtained.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2021.3121583</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7869-3738</orcidid><orcidid>https://orcid.org/0000-0002-0603-9753</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2021-12, Vol.68 (12), p.2711-2716
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_journals_2610984465
source IEEE Electronic Library (IEL)
subjects Computer simulation
Dynamic range
Electric potential
Electron emission
Electrons
Emission analysis
Gain nonlinearity
Inertial confinement fusion
Mathematical models
microchannel plate (MCP)
Microchannel plates
Microchannels
Monitoring
Monte Carlo methods
Monte Carlo simulation
Nonlinear systems
Nonlinearity
Numerical simulation
Particle in cell technique
Photomultiplier tubes
Photomultipliers
Space charge
Structural design
Structural engineering
Three dimensional models
Three-dimensional displays
Voltage
title Numerical Simulation Study on Gain Nonlinearity of Microchannel Plate in Photomultiplier Tube
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20Study%20on%20Gain%20Nonlinearity%20of%20Microchannel%20Plate%20in%20Photomultiplier%20Tube&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Guo,%20Lehui&rft.date=2021-12-01&rft.volume=68&rft.issue=12&rft.spage=2711&rft.epage=2716&rft.pages=2711-2716&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2021.3121583&rft_dat=%3Cproquest_RIE%3E2610984465%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610984465&rft_id=info:pmid/&rft_ieee_id=9580882&rfr_iscdi=true