Signal Processing-Based Deep Learning for Blind Symbol Decoding and Modulation Classification

Blindly decoding a signal requires estimating its unknown transmit parameters, compensating for the wireless channel impairments, and identifying the modulation type. While deep learning can solve complex problems, digital signal processing (DSP) is interpretable and can be more computationally effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2022-01, Vol.40 (1), p.82-96
Hauptverfasser: Hanna, Samer, Dick, Chris, Cabric, Danijela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue 1
container_start_page 82
container_title IEEE journal on selected areas in communications
container_volume 40
creator Hanna, Samer
Dick, Chris
Cabric, Danijela
description Blindly decoding a signal requires estimating its unknown transmit parameters, compensating for the wireless channel impairments, and identifying the modulation type. While deep learning can solve complex problems, digital signal processing (DSP) is interpretable and can be more computationally efficient. To combine both, we propose the dual path network (DPN). It consists of a signal path of DSP operations that recover the signal, and a feature path of neural networks that estimate the unknown transmit parameters. By interconnecting the paths over several recovery stages, later stages benefit from the recovered signals and reuse all the previously extracted features. The proposed design is demonstrated to provide 5% improvement in modulation classification compared to alternative designs lacking either feature sharing or access to recovered signals. The estimation results of DPN along with its blind decoding performance are shown to outperform a blind signal processing algorithm for BPSK and QPSK on a simulated dataset. An over-the-air software-defined-radio capture was used to verify DPN results at high SNRs. DPN design can process variable length inputs and is shown to outperform relying on fixed length inputs with prediction averaging on longer signals by up to 15% in modulation classification.
doi_str_mv 10.1109/JSAC.2021.3126088
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2610982828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9605585</ieee_id><sourcerecordid>2610982828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e17af9ac8c09ab66664a30763b32fe2ff7d2b1dd8596d1a1862a21c8485ffa7b3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw74qRN0-NWvjUE0uCIojQfU6euGcl22L8nZRP2wbL9vpb8IHQNZAJAqrvXxbSeUEJhwoByIsQJGkFRiIwQIk7RiJSMZaIEfo4uYlwRAnku6Ah9L9plrzr8Eby2Mbb9MpupaA2-t3aD51aFPs2w8wHPurY3eLFfN75La-3NsFFp9ubNrlPb1ve47lS64lr9116iM6e6aK-OdYy-Hh8-6-ds_v70Uk_nmWaMbzMLpXKV0kKTSjU8Ra4YKTlrGHWWOlca2oAxoqi4AQWCU0VBi1wUzqmyYWN0e7i7Cf5nZ-NWrvwupL-ipDzhETRlUsFBpYOPMVgnN6Fdq7CXQORAUQ4U5UBRHikmz83B01pr__UVJ4ltwX4BMT5uEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610982828</pqid></control><display><type>article</type><title>Signal Processing-Based Deep Learning for Blind Symbol Decoding and Modulation Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Hanna, Samer ; Dick, Chris ; Cabric, Danijela</creator><creatorcontrib>Hanna, Samer ; Dick, Chris ; Cabric, Danijela</creatorcontrib><description>Blindly decoding a signal requires estimating its unknown transmit parameters, compensating for the wireless channel impairments, and identifying the modulation type. While deep learning can solve complex problems, digital signal processing (DSP) is interpretable and can be more computationally efficient. To combine both, we propose the dual path network (DPN). It consists of a signal path of DSP operations that recover the signal, and a feature path of neural networks that estimate the unknown transmit parameters. By interconnecting the paths over several recovery stages, later stages benefit from the recovered signals and reuse all the previously extracted features. The proposed design is demonstrated to provide 5% improvement in modulation classification compared to alternative designs lacking either feature sharing or access to recovered signals. The estimation results of DPN along with its blind decoding performance are shown to outperform a blind signal processing algorithm for BPSK and QPSK on a simulated dataset. An over-the-air software-defined-radio capture was used to verify DPN results at high SNRs. DPN design can process variable length inputs and is shown to outperform relying on fixed length inputs with prediction averaging on longer signals by up to 15% in modulation classification.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2021.3126088</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; automatic modulation classification ; Blind symbol decoding ; Classification ; Decoding ; Deep learning ; Digital signal processing ; Estimation ; Feature extraction ; Frequency modulation ; Machine learning ; Modulation ; Neural networks ; Parameter identification ; Process variables ; Receivers ; Signal processing ; Software radio</subject><ispartof>IEEE journal on selected areas in communications, 2022-01, Vol.40 (1), p.82-96</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e17af9ac8c09ab66664a30763b32fe2ff7d2b1dd8596d1a1862a21c8485ffa7b3</citedby><cites>FETCH-LOGICAL-c336t-e17af9ac8c09ab66664a30763b32fe2ff7d2b1dd8596d1a1862a21c8485ffa7b3</cites><orcidid>0000-0002-1287-8270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9605585$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9605585$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hanna, Samer</creatorcontrib><creatorcontrib>Dick, Chris</creatorcontrib><creatorcontrib>Cabric, Danijela</creatorcontrib><title>Signal Processing-Based Deep Learning for Blind Symbol Decoding and Modulation Classification</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Blindly decoding a signal requires estimating its unknown transmit parameters, compensating for the wireless channel impairments, and identifying the modulation type. While deep learning can solve complex problems, digital signal processing (DSP) is interpretable and can be more computationally efficient. To combine both, we propose the dual path network (DPN). It consists of a signal path of DSP operations that recover the signal, and a feature path of neural networks that estimate the unknown transmit parameters. By interconnecting the paths over several recovery stages, later stages benefit from the recovered signals and reuse all the previously extracted features. The proposed design is demonstrated to provide 5% improvement in modulation classification compared to alternative designs lacking either feature sharing or access to recovered signals. The estimation results of DPN along with its blind decoding performance are shown to outperform a blind signal processing algorithm for BPSK and QPSK on a simulated dataset. An over-the-air software-defined-radio capture was used to verify DPN results at high SNRs. DPN design can process variable length inputs and is shown to outperform relying on fixed length inputs with prediction averaging on longer signals by up to 15% in modulation classification.</description><subject>Algorithms</subject><subject>automatic modulation classification</subject><subject>Blind symbol decoding</subject><subject>Classification</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>Digital signal processing</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Frequency modulation</subject><subject>Machine learning</subject><subject>Modulation</subject><subject>Neural networks</subject><subject>Parameter identification</subject><subject>Process variables</subject><subject>Receivers</subject><subject>Signal processing</subject><subject>Software radio</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw74qRN0-NWvjUE0uCIojQfU6euGcl22L8nZRP2wbL9vpb8IHQNZAJAqrvXxbSeUEJhwoByIsQJGkFRiIwQIk7RiJSMZaIEfo4uYlwRAnku6Ah9L9plrzr8Eby2Mbb9MpupaA2-t3aD51aFPs2w8wHPurY3eLFfN75La-3NsFFp9ubNrlPb1ve47lS64lr9116iM6e6aK-OdYy-Hh8-6-ds_v70Uk_nmWaMbzMLpXKV0kKTSjU8Ra4YKTlrGHWWOlca2oAxoqi4AQWCU0VBi1wUzqmyYWN0e7i7Cf5nZ-NWrvwupL-ipDzhETRlUsFBpYOPMVgnN6Fdq7CXQORAUQ4U5UBRHikmz83B01pr__UVJ4ltwX4BMT5uEQ</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Hanna, Samer</creator><creator>Dick, Chris</creator><creator>Cabric, Danijela</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1287-8270</orcidid></search><sort><creationdate>202201</creationdate><title>Signal Processing-Based Deep Learning for Blind Symbol Decoding and Modulation Classification</title><author>Hanna, Samer ; Dick, Chris ; Cabric, Danijela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e17af9ac8c09ab66664a30763b32fe2ff7d2b1dd8596d1a1862a21c8485ffa7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>automatic modulation classification</topic><topic>Blind symbol decoding</topic><topic>Classification</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>Digital signal processing</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Frequency modulation</topic><topic>Machine learning</topic><topic>Modulation</topic><topic>Neural networks</topic><topic>Parameter identification</topic><topic>Process variables</topic><topic>Receivers</topic><topic>Signal processing</topic><topic>Software radio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanna, Samer</creatorcontrib><creatorcontrib>Dick, Chris</creatorcontrib><creatorcontrib>Cabric, Danijela</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hanna, Samer</au><au>Dick, Chris</au><au>Cabric, Danijela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signal Processing-Based Deep Learning for Blind Symbol Decoding and Modulation Classification</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2022-01</date><risdate>2022</risdate><volume>40</volume><issue>1</issue><spage>82</spage><epage>96</epage><pages>82-96</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Blindly decoding a signal requires estimating its unknown transmit parameters, compensating for the wireless channel impairments, and identifying the modulation type. While deep learning can solve complex problems, digital signal processing (DSP) is interpretable and can be more computationally efficient. To combine both, we propose the dual path network (DPN). It consists of a signal path of DSP operations that recover the signal, and a feature path of neural networks that estimate the unknown transmit parameters. By interconnecting the paths over several recovery stages, later stages benefit from the recovered signals and reuse all the previously extracted features. The proposed design is demonstrated to provide 5% improvement in modulation classification compared to alternative designs lacking either feature sharing or access to recovered signals. The estimation results of DPN along with its blind decoding performance are shown to outperform a blind signal processing algorithm for BPSK and QPSK on a simulated dataset. An over-the-air software-defined-radio capture was used to verify DPN results at high SNRs. DPN design can process variable length inputs and is shown to outperform relying on fixed length inputs with prediction averaging on longer signals by up to 15% in modulation classification.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2021.3126088</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1287-8270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2022-01, Vol.40 (1), p.82-96
issn 0733-8716
1558-0008
language eng
recordid cdi_proquest_journals_2610982828
source IEEE Electronic Library (IEL)
subjects Algorithms
automatic modulation classification
Blind symbol decoding
Classification
Decoding
Deep learning
Digital signal processing
Estimation
Feature extraction
Frequency modulation
Machine learning
Modulation
Neural networks
Parameter identification
Process variables
Receivers
Signal processing
Software radio
title Signal Processing-Based Deep Learning for Blind Symbol Decoding and Modulation Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signal%20Processing-Based%20Deep%20Learning%20for%20Blind%20Symbol%20Decoding%20and%20Modulation%20Classification&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Hanna,%20Samer&rft.date=2022-01&rft.volume=40&rft.issue=1&rft.spage=82&rft.epage=96&rft.pages=82-96&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2021.3126088&rft_dat=%3Cproquest_RIE%3E2610982828%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610982828&rft_id=info:pmid/&rft_ieee_id=9605585&rfr_iscdi=true