Path planning of spot welding robot based on multi-objective grey wolf algorithm

The path planning of traditional spot welding mostly uses manual teaching method. Here, a new model of path planning is established from two aspects of welding length and welding time. Then a multi-objective grey wolf optimization algorithm with density estimation (DeMOGWO) is proposed to solve mult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2021-01, Vol.41 (6), p.6181-6189
Hauptverfasser: Zhao, Yun-Tao, Gan, Lei, Li, Wei-Gang, Liu, Ao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6189
container_issue 6
container_start_page 6181
container_title Journal of intelligent & fuzzy systems
container_volume 41
creator Zhao, Yun-Tao
Gan, Lei
Li, Wei-Gang
Liu, Ao
description The path planning of traditional spot welding mostly uses manual teaching method. Here, a new model of path planning is established from two aspects of welding length and welding time. Then a multi-objective grey wolf optimization algorithm with density estimation (DeMOGWO) is proposed to solve multi-object discrete problems. The algorithm improves the coding method and operation rules, and sets the density estimation mechanism in the environment update. By comparing with other five algorithms on the benchmark problem, the simulation results show that DeMOGWO is competitive which takes into account both diversity and convergence. Finally, the DeMOGWO algorithm is used to solve the model established of path planning. The Pareto solution obtained can be used to guide the welding sequence of body-in-white(BIW) workpieces.
doi_str_mv 10.3233/JIFS-202810
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610946016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610946016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-9eb78c1fddd9ed475cf23dd7eb4e0c5263e8300803560b38ab8d2c9fad622cba3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWD9O_oGAR4m-SXaz2aMUq5WCBfUc8tlu2W7WZGvpv3dLPc0MDDPwIHRH4ZEzzp_e57NPwoBJCmdoQmVVElmL6nz0IApCWSEu0VXOGwBalQwmaLnUwxr3re66plvhGHDu44D3vnXHnKIZk9HZOxw7vN21Q0Oi2Xg7NL8er5I_4H1sA9btKqZmWG9v0EXQbfa3_3qNvmcvX9M3svh4nU-fF8QyQQdSe1NJS4NzrvauqEobGHeu8qbwYEsmuJccQAIvBRgutZGO2TpoJxizRvNrdH_a7VP82fk8qE3cpW68VOMB1IUAKsbWw6llU8w5-aD61Gx1OigK6ohMHZGpEzL-BwS6Xx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610946016</pqid></control><display><type>article</type><title>Path planning of spot welding robot based on multi-objective grey wolf algorithm</title><source>Business Source Complete</source><creator>Zhao, Yun-Tao ; Gan, Lei ; Li, Wei-Gang ; Liu, Ao</creator><creatorcontrib>Zhao, Yun-Tao ; Gan, Lei ; Li, Wei-Gang ; Liu, Ao</creatorcontrib><description>The path planning of traditional spot welding mostly uses manual teaching method. Here, a new model of path planning is established from two aspects of welding length and welding time. Then a multi-objective grey wolf optimization algorithm with density estimation (DeMOGWO) is proposed to solve multi-object discrete problems. The algorithm improves the coding method and operation rules, and sets the density estimation mechanism in the environment update. By comparing with other five algorithms on the benchmark problem, the simulation results show that DeMOGWO is competitive which takes into account both diversity and convergence. Finally, the DeMOGWO algorithm is used to solve the model established of path planning. The Pareto solution obtained can be used to guide the welding sequence of body-in-white(BIW) workpieces.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-202810</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Density ; Multiple objective analysis ; Optimization ; Path planning ; Spot welding ; Workpieces</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2021-01, Vol.41 (6), p.6181-6189</ispartof><rights>Copyright IOS Press BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-9eb78c1fddd9ed475cf23dd7eb4e0c5263e8300803560b38ab8d2c9fad622cba3</citedby><cites>FETCH-LOGICAL-c261t-9eb78c1fddd9ed475cf23dd7eb4e0c5263e8300803560b38ab8d2c9fad622cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, Yun-Tao</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><creatorcontrib>Li, Wei-Gang</creatorcontrib><creatorcontrib>Liu, Ao</creatorcontrib><title>Path planning of spot welding robot based on multi-objective grey wolf algorithm</title><title>Journal of intelligent &amp; fuzzy systems</title><description>The path planning of traditional spot welding mostly uses manual teaching method. Here, a new model of path planning is established from two aspects of welding length and welding time. Then a multi-objective grey wolf optimization algorithm with density estimation (DeMOGWO) is proposed to solve multi-object discrete problems. The algorithm improves the coding method and operation rules, and sets the density estimation mechanism in the environment update. By comparing with other five algorithms on the benchmark problem, the simulation results show that DeMOGWO is competitive which takes into account both diversity and convergence. Finally, the DeMOGWO algorithm is used to solve the model established of path planning. The Pareto solution obtained can be used to guide the welding sequence of body-in-white(BIW) workpieces.</description><subject>Algorithms</subject><subject>Density</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Spot welding</subject><subject>Workpieces</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWD9O_oGAR4m-SXaz2aMUq5WCBfUc8tlu2W7WZGvpv3dLPc0MDDPwIHRH4ZEzzp_e57NPwoBJCmdoQmVVElmL6nz0IApCWSEu0VXOGwBalQwmaLnUwxr3re66plvhGHDu44D3vnXHnKIZk9HZOxw7vN21Q0Oi2Xg7NL8er5I_4H1sA9btKqZmWG9v0EXQbfa3_3qNvmcvX9M3svh4nU-fF8QyQQdSe1NJS4NzrvauqEobGHeu8qbwYEsmuJccQAIvBRgutZGO2TpoJxizRvNrdH_a7VP82fk8qE3cpW68VOMB1IUAKsbWw6llU8w5-aD61Gx1OigK6ohMHZGpEzL-BwS6Xx0</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhao, Yun-Tao</creator><creator>Gan, Lei</creator><creator>Li, Wei-Gang</creator><creator>Liu, Ao</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>Path planning of spot welding robot based on multi-objective grey wolf algorithm</title><author>Zhao, Yun-Tao ; Gan, Lei ; Li, Wei-Gang ; Liu, Ao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-9eb78c1fddd9ed475cf23dd7eb4e0c5263e8300803560b38ab8d2c9fad622cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Density</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Spot welding</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yun-Tao</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><creatorcontrib>Li, Wei-Gang</creatorcontrib><creatorcontrib>Liu, Ao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yun-Tao</au><au>Gan, Lei</au><au>Li, Wei-Gang</au><au>Liu, Ao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path planning of spot welding robot based on multi-objective grey wolf algorithm</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>41</volume><issue>6</issue><spage>6181</spage><epage>6189</epage><pages>6181-6189</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>The path planning of traditional spot welding mostly uses manual teaching method. Here, a new model of path planning is established from two aspects of welding length and welding time. Then a multi-objective grey wolf optimization algorithm with density estimation (DeMOGWO) is proposed to solve multi-object discrete problems. The algorithm improves the coding method and operation rules, and sets the density estimation mechanism in the environment update. By comparing with other five algorithms on the benchmark problem, the simulation results show that DeMOGWO is competitive which takes into account both diversity and convergence. Finally, the DeMOGWO algorithm is used to solve the model established of path planning. The Pareto solution obtained can be used to guide the welding sequence of body-in-white(BIW) workpieces.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-202810</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2021-01, Vol.41 (6), p.6181-6189
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2610946016
source Business Source Complete
subjects Algorithms
Density
Multiple objective analysis
Optimization
Path planning
Spot welding
Workpieces
title Path planning of spot welding robot based on multi-objective grey wolf algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20planning%20of%20spot%20welding%20robot%20based%20on%20multi-objective%20grey%20wolf%20algorithm&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Zhao,%20Yun-Tao&rft.date=2021-01-01&rft.volume=41&rft.issue=6&rft.spage=6181&rft.epage=6189&rft.pages=6181-6189&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-202810&rft_dat=%3Cproquest_cross%3E2610946016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610946016&rft_id=info:pmid/&rfr_iscdi=true