Path planning of spot welding robot based on multi-objective grey wolf algorithm
The path planning of traditional spot welding mostly uses manual teaching method. Here, a new model of path planning is established from two aspects of welding length and welding time. Then a multi-objective grey wolf optimization algorithm with density estimation (DeMOGWO) is proposed to solve mult...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2021-01, Vol.41 (6), p.6181-6189 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6189 |
---|---|
container_issue | 6 |
container_start_page | 6181 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 41 |
creator | Zhao, Yun-Tao Gan, Lei Li, Wei-Gang Liu, Ao |
description | The path planning of traditional spot welding mostly uses manual teaching method. Here, a new model of path planning is established from two aspects of welding length and welding time. Then a multi-objective grey wolf optimization algorithm with density estimation (DeMOGWO) is proposed to solve multi-object discrete problems. The algorithm improves the coding method and operation rules, and sets the density estimation mechanism in the environment update. By comparing with other five algorithms on the benchmark problem, the simulation results show that DeMOGWO is competitive which takes into account both diversity and convergence. Finally, the DeMOGWO algorithm is used to solve the model established of path planning. The Pareto solution obtained can be used to guide the welding sequence of body-in-white(BIW) workpieces. |
doi_str_mv | 10.3233/JIFS-202810 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610946016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610946016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-9eb78c1fddd9ed475cf23dd7eb4e0c5263e8300803560b38ab8d2c9fad622cba3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWD9O_oGAR4m-SXaz2aMUq5WCBfUc8tlu2W7WZGvpv3dLPc0MDDPwIHRH4ZEzzp_e57NPwoBJCmdoQmVVElmL6nz0IApCWSEu0VXOGwBalQwmaLnUwxr3re66plvhGHDu44D3vnXHnKIZk9HZOxw7vN21Q0Oi2Xg7NL8er5I_4H1sA9btKqZmWG9v0EXQbfa3_3qNvmcvX9M3svh4nU-fF8QyQQdSe1NJS4NzrvauqEobGHeu8qbwYEsmuJccQAIvBRgutZGO2TpoJxizRvNrdH_a7VP82fk8qE3cpW68VOMB1IUAKsbWw6llU8w5-aD61Gx1OigK6ohMHZGpEzL-BwS6Xx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610946016</pqid></control><display><type>article</type><title>Path planning of spot welding robot based on multi-objective grey wolf algorithm</title><source>Business Source Complete</source><creator>Zhao, Yun-Tao ; Gan, Lei ; Li, Wei-Gang ; Liu, Ao</creator><creatorcontrib>Zhao, Yun-Tao ; Gan, Lei ; Li, Wei-Gang ; Liu, Ao</creatorcontrib><description>The path planning of traditional spot welding mostly uses manual teaching method. Here, a new model of path planning is established from two aspects of welding length and welding time. Then a multi-objective grey wolf optimization algorithm with density estimation (DeMOGWO) is proposed to solve multi-object discrete problems. The algorithm improves the coding method and operation rules, and sets the density estimation mechanism in the environment update. By comparing with other five algorithms on the benchmark problem, the simulation results show that DeMOGWO is competitive which takes into account both diversity and convergence. Finally, the DeMOGWO algorithm is used to solve the model established of path planning. The Pareto solution obtained can be used to guide the welding sequence of body-in-white(BIW) workpieces.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-202810</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Density ; Multiple objective analysis ; Optimization ; Path planning ; Spot welding ; Workpieces</subject><ispartof>Journal of intelligent & fuzzy systems, 2021-01, Vol.41 (6), p.6181-6189</ispartof><rights>Copyright IOS Press BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-9eb78c1fddd9ed475cf23dd7eb4e0c5263e8300803560b38ab8d2c9fad622cba3</citedby><cites>FETCH-LOGICAL-c261t-9eb78c1fddd9ed475cf23dd7eb4e0c5263e8300803560b38ab8d2c9fad622cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, Yun-Tao</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><creatorcontrib>Li, Wei-Gang</creatorcontrib><creatorcontrib>Liu, Ao</creatorcontrib><title>Path planning of spot welding robot based on multi-objective grey wolf algorithm</title><title>Journal of intelligent & fuzzy systems</title><description>The path planning of traditional spot welding mostly uses manual teaching method. Here, a new model of path planning is established from two aspects of welding length and welding time. Then a multi-objective grey wolf optimization algorithm with density estimation (DeMOGWO) is proposed to solve multi-object discrete problems. The algorithm improves the coding method and operation rules, and sets the density estimation mechanism in the environment update. By comparing with other five algorithms on the benchmark problem, the simulation results show that DeMOGWO is competitive which takes into account both diversity and convergence. Finally, the DeMOGWO algorithm is used to solve the model established of path planning. The Pareto solution obtained can be used to guide the welding sequence of body-in-white(BIW) workpieces.</description><subject>Algorithms</subject><subject>Density</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Spot welding</subject><subject>Workpieces</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWD9O_oGAR4m-SXaz2aMUq5WCBfUc8tlu2W7WZGvpv3dLPc0MDDPwIHRH4ZEzzp_e57NPwoBJCmdoQmVVElmL6nz0IApCWSEu0VXOGwBalQwmaLnUwxr3re66plvhGHDu44D3vnXHnKIZk9HZOxw7vN21Q0Oi2Xg7NL8er5I_4H1sA9btKqZmWG9v0EXQbfa3_3qNvmcvX9M3svh4nU-fF8QyQQdSe1NJS4NzrvauqEobGHeu8qbwYEsmuJccQAIvBRgutZGO2TpoJxizRvNrdH_a7VP82fk8qE3cpW68VOMB1IUAKsbWw6llU8w5-aD61Gx1OigK6ohMHZGpEzL-BwS6Xx0</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhao, Yun-Tao</creator><creator>Gan, Lei</creator><creator>Li, Wei-Gang</creator><creator>Liu, Ao</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>Path planning of spot welding robot based on multi-objective grey wolf algorithm</title><author>Zhao, Yun-Tao ; Gan, Lei ; Li, Wei-Gang ; Liu, Ao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-9eb78c1fddd9ed475cf23dd7eb4e0c5263e8300803560b38ab8d2c9fad622cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Density</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Spot welding</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yun-Tao</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><creatorcontrib>Li, Wei-Gang</creatorcontrib><creatorcontrib>Liu, Ao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yun-Tao</au><au>Gan, Lei</au><au>Li, Wei-Gang</au><au>Liu, Ao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path planning of spot welding robot based on multi-objective grey wolf algorithm</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>41</volume><issue>6</issue><spage>6181</spage><epage>6189</epage><pages>6181-6189</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>The path planning of traditional spot welding mostly uses manual teaching method. Here, a new model of path planning is established from two aspects of welding length and welding time. Then a multi-objective grey wolf optimization algorithm with density estimation (DeMOGWO) is proposed to solve multi-object discrete problems. The algorithm improves the coding method and operation rules, and sets the density estimation mechanism in the environment update. By comparing with other five algorithms on the benchmark problem, the simulation results show that DeMOGWO is competitive which takes into account both diversity and convergence. Finally, the DeMOGWO algorithm is used to solve the model established of path planning. The Pareto solution obtained can be used to guide the welding sequence of body-in-white(BIW) workpieces.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-202810</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2021-01, Vol.41 (6), p.6181-6189 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2610946016 |
source | Business Source Complete |
subjects | Algorithms Density Multiple objective analysis Optimization Path planning Spot welding Workpieces |
title | Path planning of spot welding robot based on multi-objective grey wolf algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20planning%20of%20spot%20welding%20robot%20based%20on%20multi-objective%20grey%20wolf%20algorithm&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Zhao,%20Yun-Tao&rft.date=2021-01-01&rft.volume=41&rft.issue=6&rft.spage=6181&rft.epage=6189&rft.pages=6181-6189&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-202810&rft_dat=%3Cproquest_cross%3E2610946016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610946016&rft_id=info:pmid/&rfr_iscdi=true |