WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales

This paper establishes the wavelet transformation induced multi-time scaling (WATMUS) method as an enabler for modeling fatigue crack nucleation at microstructural and structural scales of polycrystalline metals. The WATMUS method derives its efficiency from (i) transformation of time-scale integrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrating materials and manufacturing innovation 2021-12, Vol.10 (4), p.568-587
Hauptverfasser: Ghosh, Somnath, Shen, Jinlei, Kotha, Shravan, Chakraborty, Pritam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 587
container_issue 4
container_start_page 568
container_title Integrating materials and manufacturing innovation
container_volume 10
creator Ghosh, Somnath
Shen, Jinlei
Kotha, Shravan
Chakraborty, Pritam
description This paper establishes the wavelet transformation induced multi-time scaling (WATMUS) method as an enabler for modeling fatigue crack nucleation at microstructural and structural scales of polycrystalline metals. The WATMUS method derives its efficiency from (i) transformation of time-scale integration into cycle-scale integration for marching forward in time, and (ii) adaptive cycle-stepping in the integration process. The integration of the WATMUS method with crystal plasticity finite element models for micromechanical modeling, and the parametrically homogenized constitutive models ( PHCM )-based FE solvers for macroscopic modeling provides a unique spatiotemporal multiscale platform for simulating large number of cycles (~ 10 4 –10 6 ) to fatigue nucleation. Time-scale acceleration is highly relevant when material microstructure plays a significant role, such as with dwell loading. The model is tested for cyclic and dwell loadings at multiple spatial scales of a Ti alloy Ti7AL, viz. the μ m scale of the microstructure, the mm–cm scale of laboratory specimen, and structural scale of turbine blades. Numerical results demonstrate the ability of WATMUS-accelerated FE solvers in accurately solving fatigue problems across multiple scales of the material.
doi_str_mv 10.1007/s40192-021-00232-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610940462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610940462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c5dc42c6425b82436a10c8b618e8f32af4754027733c8c9b48b3c80980818af03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz9HJx-4m3kqxWmjx0C09hmyaLVv2y2RX6L83dkVvnmYYnucdeBG6J_BIANInz4FIioESDEAZxfEVmlAiGZZpSq9_94Tfopn3JwAgjJNEkAk67-fZZrd9jvb601a2jzKnG1-0rtZ92TZ41RwGYw_RZqj6EvdlbaOt0VXZHKMARXNjguUCGw7LMI5DAMp6qC66j3Q_ql0V7l046uoSYP0duil05e3sZ07RbvmSLd7w-v11tZivsWFE9tjEB8OpSTiNc0E5SzQBI_KECCsKRnXB05gDTVPGjDAy5yIPC0gBgghdAJuihzG3c-3HYH2vTu3gmvBS0YSA5MATGig6Usa13jtbqM6VtXZnRUB9t6zGllVoWV1aVnGQ2Cj5ADdH6_6i_7G-AIwbfy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610940462</pqid></control><display><type>article</type><title>WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ghosh, Somnath ; Shen, Jinlei ; Kotha, Shravan ; Chakraborty, Pritam</creator><creatorcontrib>Ghosh, Somnath ; Shen, Jinlei ; Kotha, Shravan ; Chakraborty, Pritam</creatorcontrib><description>This paper establishes the wavelet transformation induced multi-time scaling (WATMUS) method as an enabler for modeling fatigue crack nucleation at microstructural and structural scales of polycrystalline metals. The WATMUS method derives its efficiency from (i) transformation of time-scale integration into cycle-scale integration for marching forward in time, and (ii) adaptive cycle-stepping in the integration process. The integration of the WATMUS method with crystal plasticity finite element models for micromechanical modeling, and the parametrically homogenized constitutive models ( PHCM )-based FE solvers for macroscopic modeling provides a unique spatiotemporal multiscale platform for simulating large number of cycles (~ 10 4 –10 6 ) to fatigue nucleation. Time-scale acceleration is highly relevant when material microstructure plays a significant role, such as with dwell loading. The model is tested for cyclic and dwell loadings at multiple spatial scales of a Ti alloy Ti7AL, viz. the μ m scale of the microstructure, the mm–cm scale of laboratory specimen, and structural scale of turbine blades. Numerical results demonstrate the ability of WATMUS-accelerated FE solvers in accurately solving fatigue problems across multiple scales of the material.</description><identifier>ISSN: 2193-9764</identifier><identifier>EISSN: 2193-9772</identifier><identifier>DOI: 10.1007/s40192-021-00232-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Constitutive models ; Crack initiation ; Crack propagation ; Fatigue failure ; Finite element method ; Fracture mechanics ; Materials Science ; Mathematical models ; Metallic Materials ; Microstructure ; Nanotechnology ; Nucleation ; Solvers ; Structural Materials ; Surfaces and Interfaces ; Technical Article ; Thin Films ; Titanium base alloys ; Turbine blades ; Wavelet transforms</subject><ispartof>Integrating materials and manufacturing innovation, 2021-12, Vol.10 (4), p.568-587</ispartof><rights>The Minerals, Metals &amp; Materials Society 2021</rights><rights>The Minerals, Metals &amp; Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c5dc42c6425b82436a10c8b618e8f32af4754027733c8c9b48b3c80980818af03</citedby><cites>FETCH-LOGICAL-c319t-c5dc42c6425b82436a10c8b618e8f32af4754027733c8c9b48b3c80980818af03</cites><orcidid>0000-0003-0793-6058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40192-021-00232-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40192-021-00232-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ghosh, Somnath</creatorcontrib><creatorcontrib>Shen, Jinlei</creatorcontrib><creatorcontrib>Kotha, Shravan</creatorcontrib><creatorcontrib>Chakraborty, Pritam</creatorcontrib><title>WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales</title><title>Integrating materials and manufacturing innovation</title><addtitle>Integr Mater Manuf Innov</addtitle><description>This paper establishes the wavelet transformation induced multi-time scaling (WATMUS) method as an enabler for modeling fatigue crack nucleation at microstructural and structural scales of polycrystalline metals. The WATMUS method derives its efficiency from (i) transformation of time-scale integration into cycle-scale integration for marching forward in time, and (ii) adaptive cycle-stepping in the integration process. The integration of the WATMUS method with crystal plasticity finite element models for micromechanical modeling, and the parametrically homogenized constitutive models ( PHCM )-based FE solvers for macroscopic modeling provides a unique spatiotemporal multiscale platform for simulating large number of cycles (~ 10 4 –10 6 ) to fatigue nucleation. Time-scale acceleration is highly relevant when material microstructure plays a significant role, such as with dwell loading. The model is tested for cyclic and dwell loadings at multiple spatial scales of a Ti alloy Ti7AL, viz. the μ m scale of the microstructure, the mm–cm scale of laboratory specimen, and structural scale of turbine blades. Numerical results demonstrate the ability of WATMUS-accelerated FE solvers in accurately solving fatigue problems across multiple scales of the material.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Constitutive models</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Nucleation</subject><subject>Solvers</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Technical Article</subject><subject>Thin Films</subject><subject>Titanium base alloys</subject><subject>Turbine blades</subject><subject>Wavelet transforms</subject><issn>2193-9764</issn><issn>2193-9772</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz9HJx-4m3kqxWmjx0C09hmyaLVv2y2RX6L83dkVvnmYYnucdeBG6J_BIANInz4FIioESDEAZxfEVmlAiGZZpSq9_94Tfopn3JwAgjJNEkAk67-fZZrd9jvb601a2jzKnG1-0rtZ92TZ41RwGYw_RZqj6EvdlbaOt0VXZHKMARXNjguUCGw7LMI5DAMp6qC66j3Q_ql0V7l046uoSYP0duil05e3sZ07RbvmSLd7w-v11tZivsWFE9tjEB8OpSTiNc0E5SzQBI_KECCsKRnXB05gDTVPGjDAy5yIPC0gBgghdAJuihzG3c-3HYH2vTu3gmvBS0YSA5MATGig6Usa13jtbqM6VtXZnRUB9t6zGllVoWV1aVnGQ2Cj5ADdH6_6i_7G-AIwbfy0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ghosh, Somnath</creator><creator>Shen, Jinlei</creator><creator>Kotha, Shravan</creator><creator>Chakraborty, Pritam</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0793-6058</orcidid></search><sort><creationdate>20211201</creationdate><title>WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales</title><author>Ghosh, Somnath ; Shen, Jinlei ; Kotha, Shravan ; Chakraborty, Pritam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c5dc42c6425b82436a10c8b618e8f32af4754027733c8c9b48b3c80980818af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Constitutive models</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Nucleation</topic><topic>Solvers</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Technical Article</topic><topic>Thin Films</topic><topic>Titanium base alloys</topic><topic>Turbine blades</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Somnath</creatorcontrib><creatorcontrib>Shen, Jinlei</creatorcontrib><creatorcontrib>Kotha, Shravan</creatorcontrib><creatorcontrib>Chakraborty, Pritam</creatorcontrib><collection>CrossRef</collection><jtitle>Integrating materials and manufacturing innovation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Somnath</au><au>Shen, Jinlei</au><au>Kotha, Shravan</au><au>Chakraborty, Pritam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales</atitle><jtitle>Integrating materials and manufacturing innovation</jtitle><stitle>Integr Mater Manuf Innov</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>10</volume><issue>4</issue><spage>568</spage><epage>587</epage><pages>568-587</pages><issn>2193-9764</issn><eissn>2193-9772</eissn><abstract>This paper establishes the wavelet transformation induced multi-time scaling (WATMUS) method as an enabler for modeling fatigue crack nucleation at microstructural and structural scales of polycrystalline metals. The WATMUS method derives its efficiency from (i) transformation of time-scale integration into cycle-scale integration for marching forward in time, and (ii) adaptive cycle-stepping in the integration process. The integration of the WATMUS method with crystal plasticity finite element models for micromechanical modeling, and the parametrically homogenized constitutive models ( PHCM )-based FE solvers for macroscopic modeling provides a unique spatiotemporal multiscale platform for simulating large number of cycles (~ 10 4 –10 6 ) to fatigue nucleation. Time-scale acceleration is highly relevant when material microstructure plays a significant role, such as with dwell loading. The model is tested for cyclic and dwell loadings at multiple spatial scales of a Ti alloy Ti7AL, viz. the μ m scale of the microstructure, the mm–cm scale of laboratory specimen, and structural scale of turbine blades. Numerical results demonstrate the ability of WATMUS-accelerated FE solvers in accurately solving fatigue problems across multiple scales of the material.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40192-021-00232-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0793-6058</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2193-9764
ispartof Integrating materials and manufacturing innovation, 2021-12, Vol.10 (4), p.568-587
issn 2193-9764
2193-9772
language eng
recordid cdi_proquest_journals_2610940462
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Constitutive models
Crack initiation
Crack propagation
Fatigue failure
Finite element method
Fracture mechanics
Materials Science
Mathematical models
Metallic Materials
Microstructure
Nanotechnology
Nucleation
Solvers
Structural Materials
Surfaces and Interfaces
Technical Article
Thin Films
Titanium base alloys
Turbine blades
Wavelet transforms
title WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WATMUS:%20Wavelet%20Transformation-Induced%20Multi-time%20Scaling%20for%20Accelerating%20Fatigue%20Simulations%20at%20Multiple%20Spatial%20Scales&rft.jtitle=Integrating%20materials%20and%20manufacturing%20innovation&rft.au=Ghosh,%20Somnath&rft.date=2021-12-01&rft.volume=10&rft.issue=4&rft.spage=568&rft.epage=587&rft.pages=568-587&rft.issn=2193-9764&rft.eissn=2193-9772&rft_id=info:doi/10.1007/s40192-021-00232-5&rft_dat=%3Cproquest_cross%3E2610940462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610940462&rft_id=info:pmid/&rfr_iscdi=true