WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales
This paper establishes the wavelet transformation induced multi-time scaling (WATMUS) method as an enabler for modeling fatigue crack nucleation at microstructural and structural scales of polycrystalline metals. The WATMUS method derives its efficiency from (i) transformation of time-scale integrat...
Gespeichert in:
Veröffentlicht in: | Integrating materials and manufacturing innovation 2021-12, Vol.10 (4), p.568-587 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | 4 |
container_start_page | 568 |
container_title | Integrating materials and manufacturing innovation |
container_volume | 10 |
creator | Ghosh, Somnath Shen, Jinlei Kotha, Shravan Chakraborty, Pritam |
description | This paper establishes the wavelet transformation induced multi-time scaling (WATMUS) method as an enabler for modeling fatigue crack nucleation at microstructural and structural scales of polycrystalline metals. The WATMUS method derives its efficiency from (i) transformation of time-scale integration into cycle-scale integration for marching forward in time, and (ii) adaptive cycle-stepping in the integration process. The integration of the WATMUS method with crystal plasticity finite element models for micromechanical modeling, and the parametrically homogenized constitutive models (
PHCM
)-based FE solvers for macroscopic modeling provides a unique spatiotemporal multiscale platform for simulating large number of cycles (~ 10
4
–10
6
) to fatigue nucleation. Time-scale acceleration is highly relevant when material microstructure plays a significant role, such as with dwell loading. The model is tested for cyclic and dwell loadings at multiple spatial scales of a Ti alloy Ti7AL, viz. the
μ
m
scale of the microstructure, the mm–cm scale of laboratory specimen, and structural scale of turbine blades. Numerical results demonstrate the ability of WATMUS-accelerated FE solvers in accurately solving fatigue problems across multiple scales of the material. |
doi_str_mv | 10.1007/s40192-021-00232-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610940462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610940462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c5dc42c6425b82436a10c8b618e8f32af4754027733c8c9b48b3c80980818af03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz9HJx-4m3kqxWmjx0C09hmyaLVv2y2RX6L83dkVvnmYYnucdeBG6J_BIANInz4FIioESDEAZxfEVmlAiGZZpSq9_94Tfopn3JwAgjJNEkAk67-fZZrd9jvb601a2jzKnG1-0rtZ92TZ41RwGYw_RZqj6EvdlbaOt0VXZHKMARXNjguUCGw7LMI5DAMp6qC66j3Q_ql0V7l046uoSYP0duil05e3sZ07RbvmSLd7w-v11tZivsWFE9tjEB8OpSTiNc0E5SzQBI_KECCsKRnXB05gDTVPGjDAy5yIPC0gBgghdAJuihzG3c-3HYH2vTu3gmvBS0YSA5MATGig6Usa13jtbqM6VtXZnRUB9t6zGllVoWV1aVnGQ2Cj5ADdH6_6i_7G-AIwbfy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610940462</pqid></control><display><type>article</type><title>WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ghosh, Somnath ; Shen, Jinlei ; Kotha, Shravan ; Chakraborty, Pritam</creator><creatorcontrib>Ghosh, Somnath ; Shen, Jinlei ; Kotha, Shravan ; Chakraborty, Pritam</creatorcontrib><description>This paper establishes the wavelet transformation induced multi-time scaling (WATMUS) method as an enabler for modeling fatigue crack nucleation at microstructural and structural scales of polycrystalline metals. The WATMUS method derives its efficiency from (i) transformation of time-scale integration into cycle-scale integration for marching forward in time, and (ii) adaptive cycle-stepping in the integration process. The integration of the WATMUS method with crystal plasticity finite element models for micromechanical modeling, and the parametrically homogenized constitutive models (
PHCM
)-based FE solvers for macroscopic modeling provides a unique spatiotemporal multiscale platform for simulating large number of cycles (~ 10
4
–10
6
) to fatigue nucleation. Time-scale acceleration is highly relevant when material microstructure plays a significant role, such as with dwell loading. The model is tested for cyclic and dwell loadings at multiple spatial scales of a Ti alloy Ti7AL, viz. the
μ
m
scale of the microstructure, the mm–cm scale of laboratory specimen, and structural scale of turbine blades. Numerical results demonstrate the ability of WATMUS-accelerated FE solvers in accurately solving fatigue problems across multiple scales of the material.</description><identifier>ISSN: 2193-9764</identifier><identifier>EISSN: 2193-9772</identifier><identifier>DOI: 10.1007/s40192-021-00232-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Constitutive models ; Crack initiation ; Crack propagation ; Fatigue failure ; Finite element method ; Fracture mechanics ; Materials Science ; Mathematical models ; Metallic Materials ; Microstructure ; Nanotechnology ; Nucleation ; Solvers ; Structural Materials ; Surfaces and Interfaces ; Technical Article ; Thin Films ; Titanium base alloys ; Turbine blades ; Wavelet transforms</subject><ispartof>Integrating materials and manufacturing innovation, 2021-12, Vol.10 (4), p.568-587</ispartof><rights>The Minerals, Metals & Materials Society 2021</rights><rights>The Minerals, Metals & Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c5dc42c6425b82436a10c8b618e8f32af4754027733c8c9b48b3c80980818af03</citedby><cites>FETCH-LOGICAL-c319t-c5dc42c6425b82436a10c8b618e8f32af4754027733c8c9b48b3c80980818af03</cites><orcidid>0000-0003-0793-6058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40192-021-00232-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40192-021-00232-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ghosh, Somnath</creatorcontrib><creatorcontrib>Shen, Jinlei</creatorcontrib><creatorcontrib>Kotha, Shravan</creatorcontrib><creatorcontrib>Chakraborty, Pritam</creatorcontrib><title>WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales</title><title>Integrating materials and manufacturing innovation</title><addtitle>Integr Mater Manuf Innov</addtitle><description>This paper establishes the wavelet transformation induced multi-time scaling (WATMUS) method as an enabler for modeling fatigue crack nucleation at microstructural and structural scales of polycrystalline metals. The WATMUS method derives its efficiency from (i) transformation of time-scale integration into cycle-scale integration for marching forward in time, and (ii) adaptive cycle-stepping in the integration process. The integration of the WATMUS method with crystal plasticity finite element models for micromechanical modeling, and the parametrically homogenized constitutive models (
PHCM
)-based FE solvers for macroscopic modeling provides a unique spatiotemporal multiscale platform for simulating large number of cycles (~ 10
4
–10
6
) to fatigue nucleation. Time-scale acceleration is highly relevant when material microstructure plays a significant role, such as with dwell loading. The model is tested for cyclic and dwell loadings at multiple spatial scales of a Ti alloy Ti7AL, viz. the
μ
m
scale of the microstructure, the mm–cm scale of laboratory specimen, and structural scale of turbine blades. Numerical results demonstrate the ability of WATMUS-accelerated FE solvers in accurately solving fatigue problems across multiple scales of the material.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Constitutive models</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Nucleation</subject><subject>Solvers</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Technical Article</subject><subject>Thin Films</subject><subject>Titanium base alloys</subject><subject>Turbine blades</subject><subject>Wavelet transforms</subject><issn>2193-9764</issn><issn>2193-9772</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz9HJx-4m3kqxWmjx0C09hmyaLVv2y2RX6L83dkVvnmYYnucdeBG6J_BIANInz4FIioESDEAZxfEVmlAiGZZpSq9_94Tfopn3JwAgjJNEkAk67-fZZrd9jvb601a2jzKnG1-0rtZ92TZ41RwGYw_RZqj6EvdlbaOt0VXZHKMARXNjguUCGw7LMI5DAMp6qC66j3Q_ql0V7l046uoSYP0duil05e3sZ07RbvmSLd7w-v11tZivsWFE9tjEB8OpSTiNc0E5SzQBI_KECCsKRnXB05gDTVPGjDAy5yIPC0gBgghdAJuihzG3c-3HYH2vTu3gmvBS0YSA5MATGig6Usa13jtbqM6VtXZnRUB9t6zGllVoWV1aVnGQ2Cj5ADdH6_6i_7G-AIwbfy0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ghosh, Somnath</creator><creator>Shen, Jinlei</creator><creator>Kotha, Shravan</creator><creator>Chakraborty, Pritam</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0793-6058</orcidid></search><sort><creationdate>20211201</creationdate><title>WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales</title><author>Ghosh, Somnath ; Shen, Jinlei ; Kotha, Shravan ; Chakraborty, Pritam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c5dc42c6425b82436a10c8b618e8f32af4754027733c8c9b48b3c80980818af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Constitutive models</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Nucleation</topic><topic>Solvers</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Technical Article</topic><topic>Thin Films</topic><topic>Titanium base alloys</topic><topic>Turbine blades</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Somnath</creatorcontrib><creatorcontrib>Shen, Jinlei</creatorcontrib><creatorcontrib>Kotha, Shravan</creatorcontrib><creatorcontrib>Chakraborty, Pritam</creatorcontrib><collection>CrossRef</collection><jtitle>Integrating materials and manufacturing innovation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Somnath</au><au>Shen, Jinlei</au><au>Kotha, Shravan</au><au>Chakraborty, Pritam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales</atitle><jtitle>Integrating materials and manufacturing innovation</jtitle><stitle>Integr Mater Manuf Innov</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>10</volume><issue>4</issue><spage>568</spage><epage>587</epage><pages>568-587</pages><issn>2193-9764</issn><eissn>2193-9772</eissn><abstract>This paper establishes the wavelet transformation induced multi-time scaling (WATMUS) method as an enabler for modeling fatigue crack nucleation at microstructural and structural scales of polycrystalline metals. The WATMUS method derives its efficiency from (i) transformation of time-scale integration into cycle-scale integration for marching forward in time, and (ii) adaptive cycle-stepping in the integration process. The integration of the WATMUS method with crystal plasticity finite element models for micromechanical modeling, and the parametrically homogenized constitutive models (
PHCM
)-based FE solvers for macroscopic modeling provides a unique spatiotemporal multiscale platform for simulating large number of cycles (~ 10
4
–10
6
) to fatigue nucleation. Time-scale acceleration is highly relevant when material microstructure plays a significant role, such as with dwell loading. The model is tested for cyclic and dwell loadings at multiple spatial scales of a Ti alloy Ti7AL, viz. the
μ
m
scale of the microstructure, the mm–cm scale of laboratory specimen, and structural scale of turbine blades. Numerical results demonstrate the ability of WATMUS-accelerated FE solvers in accurately solving fatigue problems across multiple scales of the material.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40192-021-00232-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0793-6058</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-9764 |
ispartof | Integrating materials and manufacturing innovation, 2021-12, Vol.10 (4), p.568-587 |
issn | 2193-9764 2193-9772 |
language | eng |
recordid | cdi_proquest_journals_2610940462 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Constitutive models Crack initiation Crack propagation Fatigue failure Finite element method Fracture mechanics Materials Science Mathematical models Metallic Materials Microstructure Nanotechnology Nucleation Solvers Structural Materials Surfaces and Interfaces Technical Article Thin Films Titanium base alloys Turbine blades Wavelet transforms |
title | WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WATMUS:%20Wavelet%20Transformation-Induced%20Multi-time%20Scaling%20for%20Accelerating%20Fatigue%20Simulations%20at%20Multiple%20Spatial%20Scales&rft.jtitle=Integrating%20materials%20and%20manufacturing%20innovation&rft.au=Ghosh,%20Somnath&rft.date=2021-12-01&rft.volume=10&rft.issue=4&rft.spage=568&rft.epage=587&rft.pages=568-587&rft.issn=2193-9764&rft.eissn=2193-9772&rft_id=info:doi/10.1007/s40192-021-00232-5&rft_dat=%3Cproquest_cross%3E2610940462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610940462&rft_id=info:pmid/&rfr_iscdi=true |