Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis
Developing highly efficient photocatalysts for artificial photosynthesis is one of the grand challenges in solar energy conversion. Among advanced photoactive materials, conjugated porous polymers (CPPs) possess a powerful combination of high surface areas, intrinsic porosity, cross‐linked nature, a...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-12, Vol.31 (51), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 51 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Collado, Laura Naranjo, Teresa Gomez‐Mendoza, Miguel López‐Calixto, Carmen G. Oropeza, Freddy E. Liras, Marta Marugán, Javier Peña O'Shea, Víctor A. |
description | Developing highly efficient photocatalysts for artificial photosynthesis is one of the grand challenges in solar energy conversion. Among advanced photoactive materials, conjugated porous polymers (CPPs) possess a powerful combination of high surface areas, intrinsic porosity, cross‐linked nature, and fully π‐conjugated electronic systems. Here, based on these fascinating properties, organic–inorganic hybrid heterostructures composed of CPPs and TiO2 for the photocatalytic CO2 reduction and H2 evolution from water are developed. The study is focused on CPPs based on the boron dipyrromethene (BODIPY) and boron pyrrol hydrazine (BOPHY) families of compounds. It is shown that hybrid photocatalysts are active for the conversion of CO2 mainly into CH4 and CO, with CH4 production 4 times over the benchmark TiO2. Hydrogen evolution from water surpassed by 37.9‐times that of TiO2, reaching 200 mmol gcat−1 and photonic efficiency of 20.4% in the presence of Pt co‐catalyst (1 wt% Pt). Advanced photophysical studies, based on time‐resolved photoluminescence and transient absorption spectroscopy, reveal the creation of a type II heterojunction in the hybrids. The unique interfacial interaction between CPPs and TiO2 results in longer carriers’ lifetimes and a higher driving force for electron transfer, opening the door to a new generation of photocatalysts for artificial photosynthesis.
Artificial photosynthesis is a challenging energy solution for the conversion of sunlight into solar fuels. Hybrid heterostructures, composed of conjugated porous polymers and TiO2, show remarkable photoactivity toward CO2 photoreduction and H2 evolution from water. Photophysical studies reveal the creation of a type II heterojunction that leads to longer carrier lifetimes and a higher driving force for electron transfer in artificial photosynthesis. |
doi_str_mv | 10.1002/adfm.202105384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610697115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610697115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-35c87c5eb1af922408d13e637c2be609aafe5014d245f2de339c3d54d9b903613</originalsourceid><addsrcrecordid>eNqFkM9LwzAcxYMoOKdXzwHPnfnR9MdxP5wdTNaDgjuFNEldStdsSYv0v7djMo-e3uPL570vPAAeMZpghMizUOV-QhDBiNEkvAIjHOEooIgk1xePP2_BnfcVQjiOaTgCx7ltqu5LtFrB3Drb-UHqfq-dhzPhh6tt4GyzWOVbKBo12DzbwkWvPTQNzPrCGQUz3Wpnq66RrbGNh6V1cOpaUxppRA3znW2t75t2p73x9-CmFLXXD786Bh_Ll_d5Fqw3r6v5dB1IyuIwoEwmsWS6wKJMCQlRojDVEY0lKXSEUiFKzRAOFQlZSZSmNJVUsVClRYpohOkYPJ17D84eO-1bXtnONcNLTiKMojTGmA3U5ExJZ713uuQHZ_bC9RwjfpqVn2bll1mHQHoOfJta9__QfLpYvv1lfwBM9Hvm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610697115</pqid></control><display><type>article</type><title>Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis</title><source>Wiley Online Library All Journals</source><creator>Collado, Laura ; Naranjo, Teresa ; Gomez‐Mendoza, Miguel ; López‐Calixto, Carmen G. ; Oropeza, Freddy E. ; Liras, Marta ; Marugán, Javier ; Peña O'Shea, Víctor A.</creator><creatorcontrib>Collado, Laura ; Naranjo, Teresa ; Gomez‐Mendoza, Miguel ; López‐Calixto, Carmen G. ; Oropeza, Freddy E. ; Liras, Marta ; Marugán, Javier ; Peña O'Shea, Víctor A.</creatorcontrib><description>Developing highly efficient photocatalysts for artificial photosynthesis is one of the grand challenges in solar energy conversion. Among advanced photoactive materials, conjugated porous polymers (CPPs) possess a powerful combination of high surface areas, intrinsic porosity, cross‐linked nature, and fully π‐conjugated electronic systems. Here, based on these fascinating properties, organic–inorganic hybrid heterostructures composed of CPPs and TiO2 for the photocatalytic CO2 reduction and H2 evolution from water are developed. The study is focused on CPPs based on the boron dipyrromethene (BODIPY) and boron pyrrol hydrazine (BOPHY) families of compounds. It is shown that hybrid photocatalysts are active for the conversion of CO2 mainly into CH4 and CO, with CH4 production 4 times over the benchmark TiO2. Hydrogen evolution from water surpassed by 37.9‐times that of TiO2, reaching 200 mmol gcat−1 and photonic efficiency of 20.4% in the presence of Pt co‐catalyst (1 wt% Pt). Advanced photophysical studies, based on time‐resolved photoluminescence and transient absorption spectroscopy, reveal the creation of a type II heterojunction in the hybrids. The unique interfacial interaction between CPPs and TiO2 results in longer carriers’ lifetimes and a higher driving force for electron transfer, opening the door to a new generation of photocatalysts for artificial photosynthesis.
Artificial photosynthesis is a challenging energy solution for the conversion of sunlight into solar fuels. Hybrid heterostructures, composed of conjugated porous polymers and TiO2, show remarkable photoactivity toward CO2 photoreduction and H2 evolution from water. Photophysical studies reveal the creation of a type II heterojunction that leads to longer carrier lifetimes and a higher driving force for electron transfer in artificial photosynthesis.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202105384</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>artificial photosynthesis ; Boron ; Carbon dioxide ; charge dynamics ; conjugated porous polymers ; Electron transfer ; Electronic systems ; Heterojunctions ; Heterostructures ; hybrid heterostructures ; Hydrazines ; Hydrogen evolution ; Materials science ; Methane ; Photocatalysis ; Photocatalysts ; Photoluminescence ; Photosynthesis ; Polymers ; Porous materials ; Solar energy conversion ; solar fuels ; Titanium dioxide ; transient absorption spectroscopy</subject><ispartof>Advanced functional materials, 2021-12, Vol.31 (51), p.n/a</ispartof><rights>2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-35c87c5eb1af922408d13e637c2be609aafe5014d245f2de339c3d54d9b903613</citedby><cites>FETCH-LOGICAL-c3574-35c87c5eb1af922408d13e637c2be609aafe5014d245f2de339c3d54d9b903613</cites><orcidid>0000-0002-2604-3733 ; 0000-0001-7222-9603 ; 0000-0003-1195-462X ; 0000-0001-5762-4787 ; 0000-0002-2771-9563 ; 0000-0002-1724-1586 ; 0000-0001-6370-9998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202105384$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202105384$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Collado, Laura</creatorcontrib><creatorcontrib>Naranjo, Teresa</creatorcontrib><creatorcontrib>Gomez‐Mendoza, Miguel</creatorcontrib><creatorcontrib>López‐Calixto, Carmen G.</creatorcontrib><creatorcontrib>Oropeza, Freddy E.</creatorcontrib><creatorcontrib>Liras, Marta</creatorcontrib><creatorcontrib>Marugán, Javier</creatorcontrib><creatorcontrib>Peña O'Shea, Víctor A.</creatorcontrib><title>Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis</title><title>Advanced functional materials</title><description>Developing highly efficient photocatalysts for artificial photosynthesis is one of the grand challenges in solar energy conversion. Among advanced photoactive materials, conjugated porous polymers (CPPs) possess a powerful combination of high surface areas, intrinsic porosity, cross‐linked nature, and fully π‐conjugated electronic systems. Here, based on these fascinating properties, organic–inorganic hybrid heterostructures composed of CPPs and TiO2 for the photocatalytic CO2 reduction and H2 evolution from water are developed. The study is focused on CPPs based on the boron dipyrromethene (BODIPY) and boron pyrrol hydrazine (BOPHY) families of compounds. It is shown that hybrid photocatalysts are active for the conversion of CO2 mainly into CH4 and CO, with CH4 production 4 times over the benchmark TiO2. Hydrogen evolution from water surpassed by 37.9‐times that of TiO2, reaching 200 mmol gcat−1 and photonic efficiency of 20.4% in the presence of Pt co‐catalyst (1 wt% Pt). Advanced photophysical studies, based on time‐resolved photoluminescence and transient absorption spectroscopy, reveal the creation of a type II heterojunction in the hybrids. The unique interfacial interaction between CPPs and TiO2 results in longer carriers’ lifetimes and a higher driving force for electron transfer, opening the door to a new generation of photocatalysts for artificial photosynthesis.
Artificial photosynthesis is a challenging energy solution for the conversion of sunlight into solar fuels. Hybrid heterostructures, composed of conjugated porous polymers and TiO2, show remarkable photoactivity toward CO2 photoreduction and H2 evolution from water. Photophysical studies reveal the creation of a type II heterojunction that leads to longer carrier lifetimes and a higher driving force for electron transfer in artificial photosynthesis.</description><subject>artificial photosynthesis</subject><subject>Boron</subject><subject>Carbon dioxide</subject><subject>charge dynamics</subject><subject>conjugated porous polymers</subject><subject>Electron transfer</subject><subject>Electronic systems</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>hybrid heterostructures</subject><subject>Hydrazines</subject><subject>Hydrogen evolution</subject><subject>Materials science</subject><subject>Methane</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photoluminescence</subject><subject>Photosynthesis</subject><subject>Polymers</subject><subject>Porous materials</subject><subject>Solar energy conversion</subject><subject>solar fuels</subject><subject>Titanium dioxide</subject><subject>transient absorption spectroscopy</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM9LwzAcxYMoOKdXzwHPnfnR9MdxP5wdTNaDgjuFNEldStdsSYv0v7djMo-e3uPL570vPAAeMZpghMizUOV-QhDBiNEkvAIjHOEooIgk1xePP2_BnfcVQjiOaTgCx7ltqu5LtFrB3Drb-UHqfq-dhzPhh6tt4GyzWOVbKBo12DzbwkWvPTQNzPrCGQUz3Wpnq66RrbGNh6V1cOpaUxppRA3znW2t75t2p73x9-CmFLXXD786Bh_Ll_d5Fqw3r6v5dB1IyuIwoEwmsWS6wKJMCQlRojDVEY0lKXSEUiFKzRAOFQlZSZSmNJVUsVClRYpohOkYPJ17D84eO-1bXtnONcNLTiKMojTGmA3U5ExJZ713uuQHZ_bC9RwjfpqVn2bll1mHQHoOfJta9__QfLpYvv1lfwBM9Hvm</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Collado, Laura</creator><creator>Naranjo, Teresa</creator><creator>Gomez‐Mendoza, Miguel</creator><creator>López‐Calixto, Carmen G.</creator><creator>Oropeza, Freddy E.</creator><creator>Liras, Marta</creator><creator>Marugán, Javier</creator><creator>Peña O'Shea, Víctor A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2604-3733</orcidid><orcidid>https://orcid.org/0000-0001-7222-9603</orcidid><orcidid>https://orcid.org/0000-0003-1195-462X</orcidid><orcidid>https://orcid.org/0000-0001-5762-4787</orcidid><orcidid>https://orcid.org/0000-0002-2771-9563</orcidid><orcidid>https://orcid.org/0000-0002-1724-1586</orcidid><orcidid>https://orcid.org/0000-0001-6370-9998</orcidid></search><sort><creationdate>20211201</creationdate><title>Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis</title><author>Collado, Laura ; Naranjo, Teresa ; Gomez‐Mendoza, Miguel ; López‐Calixto, Carmen G. ; Oropeza, Freddy E. ; Liras, Marta ; Marugán, Javier ; Peña O'Shea, Víctor A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-35c87c5eb1af922408d13e637c2be609aafe5014d245f2de339c3d54d9b903613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial photosynthesis</topic><topic>Boron</topic><topic>Carbon dioxide</topic><topic>charge dynamics</topic><topic>conjugated porous polymers</topic><topic>Electron transfer</topic><topic>Electronic systems</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>hybrid heterostructures</topic><topic>Hydrazines</topic><topic>Hydrogen evolution</topic><topic>Materials science</topic><topic>Methane</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photoluminescence</topic><topic>Photosynthesis</topic><topic>Polymers</topic><topic>Porous materials</topic><topic>Solar energy conversion</topic><topic>solar fuels</topic><topic>Titanium dioxide</topic><topic>transient absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collado, Laura</creatorcontrib><creatorcontrib>Naranjo, Teresa</creatorcontrib><creatorcontrib>Gomez‐Mendoza, Miguel</creatorcontrib><creatorcontrib>López‐Calixto, Carmen G.</creatorcontrib><creatorcontrib>Oropeza, Freddy E.</creatorcontrib><creatorcontrib>Liras, Marta</creatorcontrib><creatorcontrib>Marugán, Javier</creatorcontrib><creatorcontrib>Peña O'Shea, Víctor A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collado, Laura</au><au>Naranjo, Teresa</au><au>Gomez‐Mendoza, Miguel</au><au>López‐Calixto, Carmen G.</au><au>Oropeza, Freddy E.</au><au>Liras, Marta</au><au>Marugán, Javier</au><au>Peña O'Shea, Víctor A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis</atitle><jtitle>Advanced functional materials</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>31</volume><issue>51</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Developing highly efficient photocatalysts for artificial photosynthesis is one of the grand challenges in solar energy conversion. Among advanced photoactive materials, conjugated porous polymers (CPPs) possess a powerful combination of high surface areas, intrinsic porosity, cross‐linked nature, and fully π‐conjugated electronic systems. Here, based on these fascinating properties, organic–inorganic hybrid heterostructures composed of CPPs and TiO2 for the photocatalytic CO2 reduction and H2 evolution from water are developed. The study is focused on CPPs based on the boron dipyrromethene (BODIPY) and boron pyrrol hydrazine (BOPHY) families of compounds. It is shown that hybrid photocatalysts are active for the conversion of CO2 mainly into CH4 and CO, with CH4 production 4 times over the benchmark TiO2. Hydrogen evolution from water surpassed by 37.9‐times that of TiO2, reaching 200 mmol gcat−1 and photonic efficiency of 20.4% in the presence of Pt co‐catalyst (1 wt% Pt). Advanced photophysical studies, based on time‐resolved photoluminescence and transient absorption spectroscopy, reveal the creation of a type II heterojunction in the hybrids. The unique interfacial interaction between CPPs and TiO2 results in longer carriers’ lifetimes and a higher driving force for electron transfer, opening the door to a new generation of photocatalysts for artificial photosynthesis.
Artificial photosynthesis is a challenging energy solution for the conversion of sunlight into solar fuels. Hybrid heterostructures, composed of conjugated porous polymers and TiO2, show remarkable photoactivity toward CO2 photoreduction and H2 evolution from water. Photophysical studies reveal the creation of a type II heterojunction that leads to longer carrier lifetimes and a higher driving force for electron transfer in artificial photosynthesis.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202105384</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2604-3733</orcidid><orcidid>https://orcid.org/0000-0001-7222-9603</orcidid><orcidid>https://orcid.org/0000-0003-1195-462X</orcidid><orcidid>https://orcid.org/0000-0001-5762-4787</orcidid><orcidid>https://orcid.org/0000-0002-2771-9563</orcidid><orcidid>https://orcid.org/0000-0002-1724-1586</orcidid><orcidid>https://orcid.org/0000-0001-6370-9998</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-12, Vol.31 (51), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2610697115 |
source | Wiley Online Library All Journals |
subjects | artificial photosynthesis Boron Carbon dioxide charge dynamics conjugated porous polymers Electron transfer Electronic systems Heterojunctions Heterostructures hybrid heterostructures Hydrazines Hydrogen evolution Materials science Methane Photocatalysis Photocatalysts Photoluminescence Photosynthesis Polymers Porous materials Solar energy conversion solar fuels Titanium dioxide transient absorption spectroscopy |
title | Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugated%20Porous%20Polymers%20Based%20on%20BODIPY%20and%20BOPHY%20Dyes%20in%20Hybrid%20Heterojunctions%20for%20Artificial%20Photosynthesis&rft.jtitle=Advanced%20functional%20materials&rft.au=Collado,%20Laura&rft.date=2021-12-01&rft.volume=31&rft.issue=51&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202105384&rft_dat=%3Cproquest_cross%3E2610697115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610697115&rft_id=info:pmid/&rfr_iscdi=true |