Strong Stability for the Wulff Inequality with a Crystalline Norm

Let K be a convex polyhedron and ℱ its Wulff energy, and let CK denote the set of convex polyhedra close to K whose faces are parallel to those of K. We show that, for sufficiently small ε, all ε‐minimizers belong to CK. As a consequence of this result we obtain the following sharp stability inequal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2022-02, Vol.75 (2), p.422-446
Hauptverfasser: Figalli, Alessio, Zhang, Yi Ru‐Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue 2
container_start_page 422
container_title Communications on pure and applied mathematics
container_volume 75
creator Figalli, Alessio
Zhang, Yi Ru‐Ya
description Let K be a convex polyhedron and ℱ its Wulff energy, and let CK denote the set of convex polyhedra close to K whose faces are parallel to those of K. We show that, for sufficiently small ε, all ε‐minimizers belong to CK. As a consequence of this result we obtain the following sharp stability inequality for crystalline norms: There exist γ = γ(K, n) > 0 and σ = σ(K, n) > 0 such that, whenever ∣E ∣  =  ∣ K∣ and ∣EΔK ∣  ≤ σ, thenℱE−ℱKa≥γ∣EΔKa∣forsomeKa∈CK. In other words, the Wulff energy ℱ grows very fast (with power 1) away from CK. The set Ka∈CK appearing in the formula above can be informally thought as a sort of “projection” of E onto CK. Another corollary of our result is a very strong rigidity result for crystals: For crystalline surface tensions, minimizers of ℱ(E) + ∫Eg with small mass are polyhedra with sides parallel to the those of K. In other words, for small mass, the potential energy cannot destroy the crystalline structure of minimizers. This extends to arbitrary dimensions a two‐dimensional result obtained in [9]. © 2020 Wiley Periodicals LLC.
doi_str_mv 10.1002/cpa.21928
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610696338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610696338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-c049202459ccf05318c0330a9a38baefe09050fc01685e8f1a401ccfd2af765f3</originalsourceid><addsrcrecordid>eNp10N9LwzAQB_AgCs7pg_9BwCcfut0lbZc8juKPwVBhio8hi4nr6NotSRn9762rrz4dx33uDr6E3CJMEIBNzV5PGEomzsgIQc4S4MjOyQgAIeF5CpfkKoRt32Iq-IjMV9E39TddRb0uqzJ21DWexo2ln23lHF3U9tDq0-BYxg3VtPBdiLqqytrSl8bvrsmF01WwN391TD4eH96L52T5-rQo5svEMDkTiYFUMmBpJo1xkHEUBjgHLTUXa22dBQkZOAOYi8wKhzoF7OkX026WZ46Pyd1wd--bQ2tDVNum9XX_UrEcIZc556JX94MyvgnBW6f2vtxp3ykE9ZuQ6hNSp4R6Ox3ssaxs9z9Uxdt82PgBXMtmPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610696338</pqid></control><display><type>article</type><title>Strong Stability for the Wulff Inequality with a Crystalline Norm</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Figalli, Alessio ; Zhang, Yi Ru‐Ya</creator><creatorcontrib>Figalli, Alessio ; Zhang, Yi Ru‐Ya</creatorcontrib><description>Let K be a convex polyhedron and ℱ its Wulff energy, and let CK denote the set of convex polyhedra close to K whose faces are parallel to those of K. We show that, for sufficiently small ε, all ε‐minimizers belong to CK. As a consequence of this result we obtain the following sharp stability inequality for crystalline norms: There exist γ = γ(K, n) &gt; 0 and σ = σ(K, n) &gt; 0 such that, whenever ∣E ∣  =  ∣ K∣ and ∣EΔK ∣  ≤ σ, thenℱE−ℱKa≥γ∣EΔKa∣forsomeKa∈CK. In other words, the Wulff energy ℱ grows very fast (with power 1) away from CK. The set Ka∈CK appearing in the formula above can be informally thought as a sort of “projection” of E onto CK. Another corollary of our result is a very strong rigidity result for crystals: For crystalline surface tensions, minimizers of ℱ(E) + ∫Eg with small mass are polyhedra with sides parallel to the those of K. In other words, for small mass, the potential energy cannot destroy the crystalline structure of minimizers. This extends to arbitrary dimensions a two‐dimensional result obtained in [9]. © 2020 Wiley Periodicals LLC.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21928</identifier><language>eng</language><publisher>Melbourne: John Wiley &amp; Sons Australia, Ltd</publisher><subject>Crystal structure ; Crystallinity ; Norms ; Polyhedra ; Potential energy ; Stability</subject><ispartof>Communications on pure and applied mathematics, 2022-02, Vol.75 (2), p.422-446</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-c049202459ccf05318c0330a9a38baefe09050fc01685e8f1a401ccfd2af765f3</citedby><cites>FETCH-LOGICAL-c2978-c049202459ccf05318c0330a9a38baefe09050fc01685e8f1a401ccfd2af765f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.21928$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.21928$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Figalli, Alessio</creatorcontrib><creatorcontrib>Zhang, Yi Ru‐Ya</creatorcontrib><title>Strong Stability for the Wulff Inequality with a Crystalline Norm</title><title>Communications on pure and applied mathematics</title><description>Let K be a convex polyhedron and ℱ its Wulff energy, and let CK denote the set of convex polyhedra close to K whose faces are parallel to those of K. We show that, for sufficiently small ε, all ε‐minimizers belong to CK. As a consequence of this result we obtain the following sharp stability inequality for crystalline norms: There exist γ = γ(K, n) &gt; 0 and σ = σ(K, n) &gt; 0 such that, whenever ∣E ∣  =  ∣ K∣ and ∣EΔK ∣  ≤ σ, thenℱE−ℱKa≥γ∣EΔKa∣forsomeKa∈CK. In other words, the Wulff energy ℱ grows very fast (with power 1) away from CK. The set Ka∈CK appearing in the formula above can be informally thought as a sort of “projection” of E onto CK. Another corollary of our result is a very strong rigidity result for crystals: For crystalline surface tensions, minimizers of ℱ(E) + ∫Eg with small mass are polyhedra with sides parallel to the those of K. In other words, for small mass, the potential energy cannot destroy the crystalline structure of minimizers. This extends to arbitrary dimensions a two‐dimensional result obtained in [9]. © 2020 Wiley Periodicals LLC.</description><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Norms</subject><subject>Polyhedra</subject><subject>Potential energy</subject><subject>Stability</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10N9LwzAQB_AgCs7pg_9BwCcfut0lbZc8juKPwVBhio8hi4nr6NotSRn9762rrz4dx33uDr6E3CJMEIBNzV5PGEomzsgIQc4S4MjOyQgAIeF5CpfkKoRt32Iq-IjMV9E39TddRb0uqzJ21DWexo2ln23lHF3U9tDq0-BYxg3VtPBdiLqqytrSl8bvrsmF01WwN391TD4eH96L52T5-rQo5svEMDkTiYFUMmBpJo1xkHEUBjgHLTUXa22dBQkZOAOYi8wKhzoF7OkX026WZ46Pyd1wd--bQ2tDVNum9XX_UrEcIZc556JX94MyvgnBW6f2vtxp3ykE9ZuQ6hNSp4R6Ox3ssaxs9z9Uxdt82PgBXMtmPg</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Figalli, Alessio</creator><creator>Zhang, Yi Ru‐Ya</creator><general>John Wiley &amp; Sons Australia, Ltd</general><general>John Wiley and Sons, Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>202202</creationdate><title>Strong Stability for the Wulff Inequality with a Crystalline Norm</title><author>Figalli, Alessio ; Zhang, Yi Ru‐Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-c049202459ccf05318c0330a9a38baefe09050fc01685e8f1a401ccfd2af765f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Norms</topic><topic>Polyhedra</topic><topic>Potential energy</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Figalli, Alessio</creatorcontrib><creatorcontrib>Zhang, Yi Ru‐Ya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Figalli, Alessio</au><au>Zhang, Yi Ru‐Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Stability for the Wulff Inequality with a Crystalline Norm</atitle><jtitle>Communications on pure and applied mathematics</jtitle><date>2022-02</date><risdate>2022</risdate><volume>75</volume><issue>2</issue><spage>422</spage><epage>446</epage><pages>422-446</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><abstract>Let K be a convex polyhedron and ℱ its Wulff energy, and let CK denote the set of convex polyhedra close to K whose faces are parallel to those of K. We show that, for sufficiently small ε, all ε‐minimizers belong to CK. As a consequence of this result we obtain the following sharp stability inequality for crystalline norms: There exist γ = γ(K, n) &gt; 0 and σ = σ(K, n) &gt; 0 such that, whenever ∣E ∣  =  ∣ K∣ and ∣EΔK ∣  ≤ σ, thenℱE−ℱKa≥γ∣EΔKa∣forsomeKa∈CK. In other words, the Wulff energy ℱ grows very fast (with power 1) away from CK. The set Ka∈CK appearing in the formula above can be informally thought as a sort of “projection” of E onto CK. Another corollary of our result is a very strong rigidity result for crystals: For crystalline surface tensions, minimizers of ℱ(E) + ∫Eg with small mass are polyhedra with sides parallel to the those of K. In other words, for small mass, the potential energy cannot destroy the crystalline structure of minimizers. This extends to arbitrary dimensions a two‐dimensional result obtained in [9]. © 2020 Wiley Periodicals LLC.</abstract><cop>Melbourne</cop><pub>John Wiley &amp; Sons Australia, Ltd</pub><doi>10.1002/cpa.21928</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2022-02, Vol.75 (2), p.422-446
issn 0010-3640
1097-0312
language eng
recordid cdi_proquest_journals_2610696338
source Wiley Online Library Journals Frontfile Complete
subjects Crystal structure
Crystallinity
Norms
Polyhedra
Potential energy
Stability
title Strong Stability for the Wulff Inequality with a Crystalline Norm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Stability%20for%20the%20Wulff%20Inequality%20with%20a%20Crystalline%20Norm&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Figalli,%20Alessio&rft.date=2022-02&rft.volume=75&rft.issue=2&rft.spage=422&rft.epage=446&rft.pages=422-446&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002/cpa.21928&rft_dat=%3Cproquest_cross%3E2610696338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610696338&rft_id=info:pmid/&rfr_iscdi=true