Strong Stability for the Wulff Inequality with a Crystalline Norm
Let K be a convex polyhedron and ℱ its Wulff energy, and let CK denote the set of convex polyhedra close to K whose faces are parallel to those of K. We show that, for sufficiently small ε, all ε‐minimizers belong to CK. As a consequence of this result we obtain the following sharp stability inequal...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2022-02, Vol.75 (2), p.422-446 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 446 |
---|---|
container_issue | 2 |
container_start_page | 422 |
container_title | Communications on pure and applied mathematics |
container_volume | 75 |
creator | Figalli, Alessio Zhang, Yi Ru‐Ya |
description | Let K be a convex polyhedron and ℱ its Wulff energy, and let CK denote the set of convex polyhedra close to K whose faces are parallel to those of K. We show that, for sufficiently small ε, all ε‐minimizers belong to CK.
As a consequence of this result we obtain the following sharp stability inequality for crystalline norms: There exist γ = γ(K, n) > 0 and σ = σ(K, n) > 0 such that, whenever ∣E ∣ = ∣ K∣ and ∣EΔK ∣ ≤ σ, thenℱE−ℱKa≥γ∣EΔKa∣forsomeKa∈CK.
In other words, the Wulff energy ℱ grows very fast (with power 1) away from CK. The set Ka∈CK appearing in the formula above can be informally thought as a sort of “projection” of E onto CK.
Another corollary of our result is a very strong rigidity result for crystals: For crystalline surface tensions, minimizers of ℱ(E) + ∫Eg with small mass are polyhedra with sides parallel to the those of K. In other words, for small mass, the potential energy cannot destroy the crystalline structure of minimizers. This extends to arbitrary dimensions a two‐dimensional result obtained in [9]. © 2020 Wiley Periodicals LLC. |
doi_str_mv | 10.1002/cpa.21928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610696338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610696338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-c049202459ccf05318c0330a9a38baefe09050fc01685e8f1a401ccfd2af765f3</originalsourceid><addsrcrecordid>eNp10N9LwzAQB_AgCs7pg_9BwCcfut0lbZc8juKPwVBhio8hi4nr6NotSRn9762rrz4dx33uDr6E3CJMEIBNzV5PGEomzsgIQc4S4MjOyQgAIeF5CpfkKoRt32Iq-IjMV9E39TddRb0uqzJ21DWexo2ln23lHF3U9tDq0-BYxg3VtPBdiLqqytrSl8bvrsmF01WwN391TD4eH96L52T5-rQo5svEMDkTiYFUMmBpJo1xkHEUBjgHLTUXa22dBQkZOAOYi8wKhzoF7OkX026WZ46Pyd1wd--bQ2tDVNum9XX_UrEcIZc556JX94MyvgnBW6f2vtxp3ykE9ZuQ6hNSp4R6Ox3ssaxs9z9Uxdt82PgBXMtmPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610696338</pqid></control><display><type>article</type><title>Strong Stability for the Wulff Inequality with a Crystalline Norm</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Figalli, Alessio ; Zhang, Yi Ru‐Ya</creator><creatorcontrib>Figalli, Alessio ; Zhang, Yi Ru‐Ya</creatorcontrib><description>Let K be a convex polyhedron and ℱ its Wulff energy, and let CK denote the set of convex polyhedra close to K whose faces are parallel to those of K. We show that, for sufficiently small ε, all ε‐minimizers belong to CK.
As a consequence of this result we obtain the following sharp stability inequality for crystalline norms: There exist γ = γ(K, n) > 0 and σ = σ(K, n) > 0 such that, whenever ∣E ∣ = ∣ K∣ and ∣EΔK ∣ ≤ σ, thenℱE−ℱKa≥γ∣EΔKa∣forsomeKa∈CK.
In other words, the Wulff energy ℱ grows very fast (with power 1) away from CK. The set Ka∈CK appearing in the formula above can be informally thought as a sort of “projection” of E onto CK.
Another corollary of our result is a very strong rigidity result for crystals: For crystalline surface tensions, minimizers of ℱ(E) + ∫Eg with small mass are polyhedra with sides parallel to the those of K. In other words, for small mass, the potential energy cannot destroy the crystalline structure of minimizers. This extends to arbitrary dimensions a two‐dimensional result obtained in [9]. © 2020 Wiley Periodicals LLC.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21928</identifier><language>eng</language><publisher>Melbourne: John Wiley & Sons Australia, Ltd</publisher><subject>Crystal structure ; Crystallinity ; Norms ; Polyhedra ; Potential energy ; Stability</subject><ispartof>Communications on pure and applied mathematics, 2022-02, Vol.75 (2), p.422-446</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-c049202459ccf05318c0330a9a38baefe09050fc01685e8f1a401ccfd2af765f3</citedby><cites>FETCH-LOGICAL-c2978-c049202459ccf05318c0330a9a38baefe09050fc01685e8f1a401ccfd2af765f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.21928$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.21928$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Figalli, Alessio</creatorcontrib><creatorcontrib>Zhang, Yi Ru‐Ya</creatorcontrib><title>Strong Stability for the Wulff Inequality with a Crystalline Norm</title><title>Communications on pure and applied mathematics</title><description>Let K be a convex polyhedron and ℱ its Wulff energy, and let CK denote the set of convex polyhedra close to K whose faces are parallel to those of K. We show that, for sufficiently small ε, all ε‐minimizers belong to CK.
As a consequence of this result we obtain the following sharp stability inequality for crystalline norms: There exist γ = γ(K, n) > 0 and σ = σ(K, n) > 0 such that, whenever ∣E ∣ = ∣ K∣ and ∣EΔK ∣ ≤ σ, thenℱE−ℱKa≥γ∣EΔKa∣forsomeKa∈CK.
In other words, the Wulff energy ℱ grows very fast (with power 1) away from CK. The set Ka∈CK appearing in the formula above can be informally thought as a sort of “projection” of E onto CK.
Another corollary of our result is a very strong rigidity result for crystals: For crystalline surface tensions, minimizers of ℱ(E) + ∫Eg with small mass are polyhedra with sides parallel to the those of K. In other words, for small mass, the potential energy cannot destroy the crystalline structure of minimizers. This extends to arbitrary dimensions a two‐dimensional result obtained in [9]. © 2020 Wiley Periodicals LLC.</description><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Norms</subject><subject>Polyhedra</subject><subject>Potential energy</subject><subject>Stability</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10N9LwzAQB_AgCs7pg_9BwCcfut0lbZc8juKPwVBhio8hi4nr6NotSRn9762rrz4dx33uDr6E3CJMEIBNzV5PGEomzsgIQc4S4MjOyQgAIeF5CpfkKoRt32Iq-IjMV9E39TddRb0uqzJ21DWexo2ln23lHF3U9tDq0-BYxg3VtPBdiLqqytrSl8bvrsmF01WwN391TD4eH96L52T5-rQo5svEMDkTiYFUMmBpJo1xkHEUBjgHLTUXa22dBQkZOAOYi8wKhzoF7OkX026WZ46Pyd1wd--bQ2tDVNum9XX_UrEcIZc556JX94MyvgnBW6f2vtxp3ykE9ZuQ6hNSp4R6Ox3ssaxs9z9Uxdt82PgBXMtmPg</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Figalli, Alessio</creator><creator>Zhang, Yi Ru‐Ya</creator><general>John Wiley & Sons Australia, Ltd</general><general>John Wiley and Sons, Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>202202</creationdate><title>Strong Stability for the Wulff Inequality with a Crystalline Norm</title><author>Figalli, Alessio ; Zhang, Yi Ru‐Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-c049202459ccf05318c0330a9a38baefe09050fc01685e8f1a401ccfd2af765f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Norms</topic><topic>Polyhedra</topic><topic>Potential energy</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Figalli, Alessio</creatorcontrib><creatorcontrib>Zhang, Yi Ru‐Ya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Figalli, Alessio</au><au>Zhang, Yi Ru‐Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Stability for the Wulff Inequality with a Crystalline Norm</atitle><jtitle>Communications on pure and applied mathematics</jtitle><date>2022-02</date><risdate>2022</risdate><volume>75</volume><issue>2</issue><spage>422</spage><epage>446</epage><pages>422-446</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><abstract>Let K be a convex polyhedron and ℱ its Wulff energy, and let CK denote the set of convex polyhedra close to K whose faces are parallel to those of K. We show that, for sufficiently small ε, all ε‐minimizers belong to CK.
As a consequence of this result we obtain the following sharp stability inequality for crystalline norms: There exist γ = γ(K, n) > 0 and σ = σ(K, n) > 0 such that, whenever ∣E ∣ = ∣ K∣ and ∣EΔK ∣ ≤ σ, thenℱE−ℱKa≥γ∣EΔKa∣forsomeKa∈CK.
In other words, the Wulff energy ℱ grows very fast (with power 1) away from CK. The set Ka∈CK appearing in the formula above can be informally thought as a sort of “projection” of E onto CK.
Another corollary of our result is a very strong rigidity result for crystals: For crystalline surface tensions, minimizers of ℱ(E) + ∫Eg with small mass are polyhedra with sides parallel to the those of K. In other words, for small mass, the potential energy cannot destroy the crystalline structure of minimizers. This extends to arbitrary dimensions a two‐dimensional result obtained in [9]. © 2020 Wiley Periodicals LLC.</abstract><cop>Melbourne</cop><pub>John Wiley & Sons Australia, Ltd</pub><doi>10.1002/cpa.21928</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3640 |
ispartof | Communications on pure and applied mathematics, 2022-02, Vol.75 (2), p.422-446 |
issn | 0010-3640 1097-0312 |
language | eng |
recordid | cdi_proquest_journals_2610696338 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Crystal structure Crystallinity Norms Polyhedra Potential energy Stability |
title | Strong Stability for the Wulff Inequality with a Crystalline Norm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Stability%20for%20the%20Wulff%20Inequality%20with%20a%20Crystalline%20Norm&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Figalli,%20Alessio&rft.date=2022-02&rft.volume=75&rft.issue=2&rft.spage=422&rft.epage=446&rft.pages=422-446&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002/cpa.21928&rft_dat=%3Cproquest_cross%3E2610696338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610696338&rft_id=info:pmid/&rfr_iscdi=true |