Anomalous Dimensionality‐Driven Phase Transition of MoTe2 in Van der Waals Heterostructure

Phase transition in nanomaterials is distinct from that in 3D bulk materials owing to the dominant contribution of surface energy. Among nanomaterials, 2D materials have shown unique phase transition behaviors due to their larger surface‐to‐volume ratio, high crystallinity, and lack of dangling bond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-12, Vol.31 (51), p.n/a
Hauptverfasser: Ryu, Huije, Lee, Yangjin, Kim, Hyun‐Jung, Kang, Seoung‐Hun, Kang, Yoongu, Kim, Kangwon, Kim, Jungcheol, Janicek, Blanka E., Watanabe, Kenji, Taniguchi, Takashi, Huang, Pinshane Y., Cheong, Hyeonsik, Jung, In‐Ho, Kim, Kwanpyo, Son, Young‐Woo, Lee, Gwan‐Hyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 51
container_start_page
container_title Advanced functional materials
container_volume 31
creator Ryu, Huije
Lee, Yangjin
Kim, Hyun‐Jung
Kang, Seoung‐Hun
Kang, Yoongu
Kim, Kangwon
Kim, Jungcheol
Janicek, Blanka E.
Watanabe, Kenji
Taniguchi, Takashi
Huang, Pinshane Y.
Cheong, Hyeonsik
Jung, In‐Ho
Kim, Kwanpyo
Son, Young‐Woo
Lee, Gwan‐Hyoung
description Phase transition in nanomaterials is distinct from that in 3D bulk materials owing to the dominant contribution of surface energy. Among nanomaterials, 2D materials have shown unique phase transition behaviors due to their larger surface‐to‐volume ratio, high crystallinity, and lack of dangling bonds in atomically thin layers. Here, the anomalous dimensionality‐driven phase transition of molybdenum ditelluride (MoTe2) encapsulated by hexagonal boron nitride (hBN) is reported. After encapsulation annealing, single‐crystal 2H‐MoTe2 transformed into polycrystalline Td‐MoTe2 with tilt‐angle grain boundaries of 60°‐glide‐reflection and 120°‐twofold rotation. In contrast to conventional nanomaterials, the hBN‐encapsulated MoTe2 exhibit a deterministic dependence of the phase transition on the number of layers, in which the thinner MoTe2 has a higher 2H‐to‐Td phase transition temperature. In addition, the vertical and lateral phase transitions of the stacked MoTe2 with different crystalline orientations can be controlled by inserted graphene layers and the thickness of the heterostructure. Finally, it is shown that seamless Td contacts for 2H‐MoTe2 transistors can be fabricated by using the dimensionality‐driven phase transition. The work provides insight into the phase transition of 2D materials and van der Waals heterostructures and illustrates a novel method for the fabrication of multi‐phase 2D electronics. Dimensionality‐driven anomalous phase transition of MoTe2 is demonstrated. The thinner MoTe2 has a higher 2H‐to‐Td phase transition temperature with distinct temperature differences. Vertical and lateral phase‐patterning is achieved by modulating the thickness via stacking and insertion of graphene. By using dimensionality‐driven phase transition, seamless Td contacts for 2H‐MoTe2 transistors are fabricated, leading to low contact resistance and high mobility.
doi_str_mv 10.1002/adfm.202107376
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2610695583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610695583</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2336-a54c0c4fc72418b8d6f1d7eae7d98ac9dc8b505bb08ff51c865d8bde3d1238c73</originalsourceid><addsrcrecordid>eNo9kMtKAzEYhYMoWKtb1wHXU3OZSTLL0tpWaNFFvSyEkEkymDIzqcmM0p2P4DP6JE6pdPVfzuHA-QC4xmiEESK3ypT1iCCCEaecnYABZpglFBFxetzx6zm4iHGDEOacpgPwNm58rSrfRTh1tW2i842qXLv7_f6ZBvdpG_j4rqKF66B6se1l6Eu48mtLoGvgs2qgsQG-KFVFuLCtDT62odNtF-wlOCv7t736n0PwNLtbTxbJ8mF-Pxkvky2hlCUqSzXSaak5SbEohGElNtwqy00ulM6NFkWGsqJAoiwzrAXLjCiMpQYTKjSnQ3BzyN0G_9HZ2MqN70LfI0rCMGJ5lgnau_KD68tVdie3wdUq7CRGco9P7vHJIz45ns5Wx4v-ARZ3aF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610695583</pqid></control><display><type>article</type><title>Anomalous Dimensionality‐Driven Phase Transition of MoTe2 in Van der Waals Heterostructure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ryu, Huije ; Lee, Yangjin ; Kim, Hyun‐Jung ; Kang, Seoung‐Hun ; Kang, Yoongu ; Kim, Kangwon ; Kim, Jungcheol ; Janicek, Blanka E. ; Watanabe, Kenji ; Taniguchi, Takashi ; Huang, Pinshane Y. ; Cheong, Hyeonsik ; Jung, In‐Ho ; Kim, Kwanpyo ; Son, Young‐Woo ; Lee, Gwan‐Hyoung</creator><creatorcontrib>Ryu, Huije ; Lee, Yangjin ; Kim, Hyun‐Jung ; Kang, Seoung‐Hun ; Kang, Yoongu ; Kim, Kangwon ; Kim, Jungcheol ; Janicek, Blanka E. ; Watanabe, Kenji ; Taniguchi, Takashi ; Huang, Pinshane Y. ; Cheong, Hyeonsik ; Jung, In‐Ho ; Kim, Kwanpyo ; Son, Young‐Woo ; Lee, Gwan‐Hyoung</creatorcontrib><description>Phase transition in nanomaterials is distinct from that in 3D bulk materials owing to the dominant contribution of surface energy. Among nanomaterials, 2D materials have shown unique phase transition behaviors due to their larger surface‐to‐volume ratio, high crystallinity, and lack of dangling bonds in atomically thin layers. Here, the anomalous dimensionality‐driven phase transition of molybdenum ditelluride (MoTe2) encapsulated by hexagonal boron nitride (hBN) is reported. After encapsulation annealing, single‐crystal 2H‐MoTe2 transformed into polycrystalline Td‐MoTe2 with tilt‐angle grain boundaries of 60°‐glide‐reflection and 120°‐twofold rotation. In contrast to conventional nanomaterials, the hBN‐encapsulated MoTe2 exhibit a deterministic dependence of the phase transition on the number of layers, in which the thinner MoTe2 has a higher 2H‐to‐Td phase transition temperature. In addition, the vertical and lateral phase transitions of the stacked MoTe2 with different crystalline orientations can be controlled by inserted graphene layers and the thickness of the heterostructure. Finally, it is shown that seamless Td contacts for 2H‐MoTe2 transistors can be fabricated by using the dimensionality‐driven phase transition. The work provides insight into the phase transition of 2D materials and van der Waals heterostructures and illustrates a novel method for the fabrication of multi‐phase 2D electronics. Dimensionality‐driven anomalous phase transition of MoTe2 is demonstrated. The thinner MoTe2 has a higher 2H‐to‐Td phase transition temperature with distinct temperature differences. Vertical and lateral phase‐patterning is achieved by modulating the thickness via stacking and insertion of graphene. By using dimensionality‐driven phase transition, seamless Td contacts for 2H‐MoTe2 transistors are fabricated, leading to low contact resistance and high mobility.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202107376</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Boron nitride ; Crystal structure ; Crystallinity ; Crystals ; dimensionality ; Encapsulation ; Grain boundaries ; Graphene ; Heterostructures ; Materials science ; Molybdenum compounds ; MoTe 2 ; Nanomaterials ; phase transition ; Phase transitions ; Surface energy ; Tellurides ; Thickness ; Thin films ; Transistors ; Transition temperature ; Two dimensional materials ; van der Waals heterostructures</subject><ispartof>Advanced functional materials, 2021-12, Vol.31 (51), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3028-867X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202107376$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202107376$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Ryu, Huije</creatorcontrib><creatorcontrib>Lee, Yangjin</creatorcontrib><creatorcontrib>Kim, Hyun‐Jung</creatorcontrib><creatorcontrib>Kang, Seoung‐Hun</creatorcontrib><creatorcontrib>Kang, Yoongu</creatorcontrib><creatorcontrib>Kim, Kangwon</creatorcontrib><creatorcontrib>Kim, Jungcheol</creatorcontrib><creatorcontrib>Janicek, Blanka E.</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Huang, Pinshane Y.</creatorcontrib><creatorcontrib>Cheong, Hyeonsik</creatorcontrib><creatorcontrib>Jung, In‐Ho</creatorcontrib><creatorcontrib>Kim, Kwanpyo</creatorcontrib><creatorcontrib>Son, Young‐Woo</creatorcontrib><creatorcontrib>Lee, Gwan‐Hyoung</creatorcontrib><title>Anomalous Dimensionality‐Driven Phase Transition of MoTe2 in Van der Waals Heterostructure</title><title>Advanced functional materials</title><description>Phase transition in nanomaterials is distinct from that in 3D bulk materials owing to the dominant contribution of surface energy. Among nanomaterials, 2D materials have shown unique phase transition behaviors due to their larger surface‐to‐volume ratio, high crystallinity, and lack of dangling bonds in atomically thin layers. Here, the anomalous dimensionality‐driven phase transition of molybdenum ditelluride (MoTe2) encapsulated by hexagonal boron nitride (hBN) is reported. After encapsulation annealing, single‐crystal 2H‐MoTe2 transformed into polycrystalline Td‐MoTe2 with tilt‐angle grain boundaries of 60°‐glide‐reflection and 120°‐twofold rotation. In contrast to conventional nanomaterials, the hBN‐encapsulated MoTe2 exhibit a deterministic dependence of the phase transition on the number of layers, in which the thinner MoTe2 has a higher 2H‐to‐Td phase transition temperature. In addition, the vertical and lateral phase transitions of the stacked MoTe2 with different crystalline orientations can be controlled by inserted graphene layers and the thickness of the heterostructure. Finally, it is shown that seamless Td contacts for 2H‐MoTe2 transistors can be fabricated by using the dimensionality‐driven phase transition. The work provides insight into the phase transition of 2D materials and van der Waals heterostructures and illustrates a novel method for the fabrication of multi‐phase 2D electronics. Dimensionality‐driven anomalous phase transition of MoTe2 is demonstrated. The thinner MoTe2 has a higher 2H‐to‐Td phase transition temperature with distinct temperature differences. Vertical and lateral phase‐patterning is achieved by modulating the thickness via stacking and insertion of graphene. By using dimensionality‐driven phase transition, seamless Td contacts for 2H‐MoTe2 transistors are fabricated, leading to low contact resistance and high mobility.</description><subject>2D materials</subject><subject>Boron nitride</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystals</subject><subject>dimensionality</subject><subject>Encapsulation</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Materials science</subject><subject>Molybdenum compounds</subject><subject>MoTe 2</subject><subject>Nanomaterials</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Surface energy</subject><subject>Tellurides</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Transistors</subject><subject>Transition temperature</subject><subject>Two dimensional materials</subject><subject>van der Waals heterostructures</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEYhYMoWKtb1wHXU3OZSTLL0tpWaNFFvSyEkEkymDIzqcmM0p2P4DP6JE6pdPVfzuHA-QC4xmiEESK3ypT1iCCCEaecnYABZpglFBFxetzx6zm4iHGDEOacpgPwNm58rSrfRTh1tW2i842qXLv7_f6ZBvdpG_j4rqKF66B6se1l6Eu48mtLoGvgs2qgsQG-KFVFuLCtDT62odNtF-wlOCv7t736n0PwNLtbTxbJ8mF-Pxkvky2hlCUqSzXSaak5SbEohGElNtwqy00ulM6NFkWGsqJAoiwzrAXLjCiMpQYTKjSnQ3BzyN0G_9HZ2MqN70LfI0rCMGJ5lgnau_KD68tVdie3wdUq7CRGco9P7vHJIz45ns5Wx4v-ARZ3aF0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ryu, Huije</creator><creator>Lee, Yangjin</creator><creator>Kim, Hyun‐Jung</creator><creator>Kang, Seoung‐Hun</creator><creator>Kang, Yoongu</creator><creator>Kim, Kangwon</creator><creator>Kim, Jungcheol</creator><creator>Janicek, Blanka E.</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Huang, Pinshane Y.</creator><creator>Cheong, Hyeonsik</creator><creator>Jung, In‐Ho</creator><creator>Kim, Kwanpyo</creator><creator>Son, Young‐Woo</creator><creator>Lee, Gwan‐Hyoung</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3028-867X</orcidid></search><sort><creationdate>20211201</creationdate><title>Anomalous Dimensionality‐Driven Phase Transition of MoTe2 in Van der Waals Heterostructure</title><author>Ryu, Huije ; Lee, Yangjin ; Kim, Hyun‐Jung ; Kang, Seoung‐Hun ; Kang, Yoongu ; Kim, Kangwon ; Kim, Jungcheol ; Janicek, Blanka E. ; Watanabe, Kenji ; Taniguchi, Takashi ; Huang, Pinshane Y. ; Cheong, Hyeonsik ; Jung, In‐Ho ; Kim, Kwanpyo ; Son, Young‐Woo ; Lee, Gwan‐Hyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2336-a54c0c4fc72418b8d6f1d7eae7d98ac9dc8b505bb08ff51c865d8bde3d1238c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D materials</topic><topic>Boron nitride</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystals</topic><topic>dimensionality</topic><topic>Encapsulation</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Materials science</topic><topic>Molybdenum compounds</topic><topic>MoTe 2</topic><topic>Nanomaterials</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Surface energy</topic><topic>Tellurides</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Transistors</topic><topic>Transition temperature</topic><topic>Two dimensional materials</topic><topic>van der Waals heterostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Huije</creatorcontrib><creatorcontrib>Lee, Yangjin</creatorcontrib><creatorcontrib>Kim, Hyun‐Jung</creatorcontrib><creatorcontrib>Kang, Seoung‐Hun</creatorcontrib><creatorcontrib>Kang, Yoongu</creatorcontrib><creatorcontrib>Kim, Kangwon</creatorcontrib><creatorcontrib>Kim, Jungcheol</creatorcontrib><creatorcontrib>Janicek, Blanka E.</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Huang, Pinshane Y.</creatorcontrib><creatorcontrib>Cheong, Hyeonsik</creatorcontrib><creatorcontrib>Jung, In‐Ho</creatorcontrib><creatorcontrib>Kim, Kwanpyo</creatorcontrib><creatorcontrib>Son, Young‐Woo</creatorcontrib><creatorcontrib>Lee, Gwan‐Hyoung</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryu, Huije</au><au>Lee, Yangjin</au><au>Kim, Hyun‐Jung</au><au>Kang, Seoung‐Hun</au><au>Kang, Yoongu</au><au>Kim, Kangwon</au><au>Kim, Jungcheol</au><au>Janicek, Blanka E.</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Huang, Pinshane Y.</au><au>Cheong, Hyeonsik</au><au>Jung, In‐Ho</au><au>Kim, Kwanpyo</au><au>Son, Young‐Woo</au><au>Lee, Gwan‐Hyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomalous Dimensionality‐Driven Phase Transition of MoTe2 in Van der Waals Heterostructure</atitle><jtitle>Advanced functional materials</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>31</volume><issue>51</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Phase transition in nanomaterials is distinct from that in 3D bulk materials owing to the dominant contribution of surface energy. Among nanomaterials, 2D materials have shown unique phase transition behaviors due to their larger surface‐to‐volume ratio, high crystallinity, and lack of dangling bonds in atomically thin layers. Here, the anomalous dimensionality‐driven phase transition of molybdenum ditelluride (MoTe2) encapsulated by hexagonal boron nitride (hBN) is reported. After encapsulation annealing, single‐crystal 2H‐MoTe2 transformed into polycrystalline Td‐MoTe2 with tilt‐angle grain boundaries of 60°‐glide‐reflection and 120°‐twofold rotation. In contrast to conventional nanomaterials, the hBN‐encapsulated MoTe2 exhibit a deterministic dependence of the phase transition on the number of layers, in which the thinner MoTe2 has a higher 2H‐to‐Td phase transition temperature. In addition, the vertical and lateral phase transitions of the stacked MoTe2 with different crystalline orientations can be controlled by inserted graphene layers and the thickness of the heterostructure. Finally, it is shown that seamless Td contacts for 2H‐MoTe2 transistors can be fabricated by using the dimensionality‐driven phase transition. The work provides insight into the phase transition of 2D materials and van der Waals heterostructures and illustrates a novel method for the fabrication of multi‐phase 2D electronics. Dimensionality‐driven anomalous phase transition of MoTe2 is demonstrated. The thinner MoTe2 has a higher 2H‐to‐Td phase transition temperature with distinct temperature differences. Vertical and lateral phase‐patterning is achieved by modulating the thickness via stacking and insertion of graphene. By using dimensionality‐driven phase transition, seamless Td contacts for 2H‐MoTe2 transistors are fabricated, leading to low contact resistance and high mobility.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202107376</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3028-867X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-12, Vol.31 (51), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2610695583
source Wiley Online Library Journals Frontfile Complete
subjects 2D materials
Boron nitride
Crystal structure
Crystallinity
Crystals
dimensionality
Encapsulation
Grain boundaries
Graphene
Heterostructures
Materials science
Molybdenum compounds
MoTe 2
Nanomaterials
phase transition
Phase transitions
Surface energy
Tellurides
Thickness
Thin films
Transistors
Transition temperature
Two dimensional materials
van der Waals heterostructures
title Anomalous Dimensionality‐Driven Phase Transition of MoTe2 in Van der Waals Heterostructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomalous%20Dimensionality%E2%80%90Driven%20Phase%20Transition%20of%20MoTe2%20in%20Van%20der%20Waals%20Heterostructure&rft.jtitle=Advanced%20functional%20materials&rft.au=Ryu,%20Huije&rft.date=2021-12-01&rft.volume=31&rft.issue=51&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202107376&rft_dat=%3Cproquest_wiley%3E2610695583%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610695583&rft_id=info:pmid/&rfr_iscdi=true