Large Dual Encoders Are Generalizable Retrievers

It has been shown that dual encoders trained on one domain often fail to generalize to other domains for retrieval tasks. One widespread belief is that the bottleneck layer of a dual encoder, where the final score is simply a dot-product between a query vector and a passage vector, is too limited to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-12
Hauptverfasser: Ni, Jianmo, Qu, Chen, Lu, Jing, Dai, Zhuyun, Gustavo Hernández Ábrego, Ma, Ji, Zhao, Vincent Y, Luan, Yi, Hall, Keith B, Ming-Wei, Chang, Yang, Yinfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ni, Jianmo
Qu, Chen
Lu, Jing
Dai, Zhuyun
Gustavo Hernández Ábrego
Ma, Ji
Zhao, Vincent Y
Luan, Yi
Hall, Keith B
Ming-Wei, Chang
Yang, Yinfei
description It has been shown that dual encoders trained on one domain often fail to generalize to other domains for retrieval tasks. One widespread belief is that the bottleneck layer of a dual encoder, where the final score is simply a dot-product between a query vector and a passage vector, is too limited to make dual encoders an effective retrieval model for out-of-domain generalization. In this paper, we challenge this belief by scaling up the size of the dual encoder model {\em while keeping the bottleneck embedding size fixed.} With multi-stage training, surprisingly, scaling up the model size brings significant improvement on a variety of retrieval tasks, especially for out-of-domain generalization. Experimental results show that our dual encoders, \textbf{G}eneralizable \textbf{T}5-based dense \textbf{R}etrievers (GTR), outperform %ColBERT~\cite{khattab2020colbert} and existing sparse and dense retrievers on the BEIR dataset~\cite{thakur2021beir} significantly. Most surprisingly, our ablation study finds that GTR is very data efficient, as it only needs 10\% of MS Marco supervised data to achieve the best out-of-domain performance. All the GTR models are released at https://tfhub.dev/google/collections/gtr/1.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2610665933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610665933</sourcerecordid><originalsourceid>FETCH-proquest_journals_26106659333</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8EksSk9VcClNzFFwzUvOT0ktKlZwLEpVcE_NSy1KzMmsSkzKSVUISi0pykwtA0ryMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kZmhgZmZqaWxsTFxqgA1VjLD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610665933</pqid></control><display><type>article</type><title>Large Dual Encoders Are Generalizable Retrievers</title><source>Free E- Journals</source><creator>Ni, Jianmo ; Qu, Chen ; Lu, Jing ; Dai, Zhuyun ; Gustavo Hernández Ábrego ; Ma, Ji ; Zhao, Vincent Y ; Luan, Yi ; Hall, Keith B ; Ming-Wei, Chang ; Yang, Yinfei</creator><creatorcontrib>Ni, Jianmo ; Qu, Chen ; Lu, Jing ; Dai, Zhuyun ; Gustavo Hernández Ábrego ; Ma, Ji ; Zhao, Vincent Y ; Luan, Yi ; Hall, Keith B ; Ming-Wei, Chang ; Yang, Yinfei</creatorcontrib><description>It has been shown that dual encoders trained on one domain often fail to generalize to other domains for retrieval tasks. One widespread belief is that the bottleneck layer of a dual encoder, where the final score is simply a dot-product between a query vector and a passage vector, is too limited to make dual encoders an effective retrieval model for out-of-domain generalization. In this paper, we challenge this belief by scaling up the size of the dual encoder model {\em while keeping the bottleneck embedding size fixed.} With multi-stage training, surprisingly, scaling up the model size brings significant improvement on a variety of retrieval tasks, especially for out-of-domain generalization. Experimental results show that our dual encoders, \textbf{G}eneralizable \textbf{T}5-based dense \textbf{R}etrievers (GTR), outperform %ColBERT~\cite{khattab2020colbert} and existing sparse and dense retrievers on the BEIR dataset~\cite{thakur2021beir} significantly. Most surprisingly, our ablation study finds that GTR is very data efficient, as it only needs 10\% of MS Marco supervised data to achieve the best out-of-domain performance. All the GTR models are released at https://tfhub.dev/google/collections/gtr/1.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ablation ; Coders ; Domains ; Retrieval ; Scaling up</subject><ispartof>arXiv.org, 2021-12</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ni, Jianmo</creatorcontrib><creatorcontrib>Qu, Chen</creatorcontrib><creatorcontrib>Lu, Jing</creatorcontrib><creatorcontrib>Dai, Zhuyun</creatorcontrib><creatorcontrib>Gustavo Hernández Ábrego</creatorcontrib><creatorcontrib>Ma, Ji</creatorcontrib><creatorcontrib>Zhao, Vincent Y</creatorcontrib><creatorcontrib>Luan, Yi</creatorcontrib><creatorcontrib>Hall, Keith B</creatorcontrib><creatorcontrib>Ming-Wei, Chang</creatorcontrib><creatorcontrib>Yang, Yinfei</creatorcontrib><title>Large Dual Encoders Are Generalizable Retrievers</title><title>arXiv.org</title><description>It has been shown that dual encoders trained on one domain often fail to generalize to other domains for retrieval tasks. One widespread belief is that the bottleneck layer of a dual encoder, where the final score is simply a dot-product between a query vector and a passage vector, is too limited to make dual encoders an effective retrieval model for out-of-domain generalization. In this paper, we challenge this belief by scaling up the size of the dual encoder model {\em while keeping the bottleneck embedding size fixed.} With multi-stage training, surprisingly, scaling up the model size brings significant improvement on a variety of retrieval tasks, especially for out-of-domain generalization. Experimental results show that our dual encoders, \textbf{G}eneralizable \textbf{T}5-based dense \textbf{R}etrievers (GTR), outperform %ColBERT~\cite{khattab2020colbert} and existing sparse and dense retrievers on the BEIR dataset~\cite{thakur2021beir} significantly. Most surprisingly, our ablation study finds that GTR is very data efficient, as it only needs 10\% of MS Marco supervised data to achieve the best out-of-domain performance. All the GTR models are released at https://tfhub.dev/google/collections/gtr/1.</description><subject>Ablation</subject><subject>Coders</subject><subject>Domains</subject><subject>Retrieval</subject><subject>Scaling up</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8EksSk9VcClNzFFwzUvOT0ktKlZwLEpVcE_NSy1KzMmsSkzKSVUISi0pykwtA0ryMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kZmhgZmZqaWxsTFxqgA1VjLD</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Ni, Jianmo</creator><creator>Qu, Chen</creator><creator>Lu, Jing</creator><creator>Dai, Zhuyun</creator><creator>Gustavo Hernández Ábrego</creator><creator>Ma, Ji</creator><creator>Zhao, Vincent Y</creator><creator>Luan, Yi</creator><creator>Hall, Keith B</creator><creator>Ming-Wei, Chang</creator><creator>Yang, Yinfei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211215</creationdate><title>Large Dual Encoders Are Generalizable Retrievers</title><author>Ni, Jianmo ; Qu, Chen ; Lu, Jing ; Dai, Zhuyun ; Gustavo Hernández Ábrego ; Ma, Ji ; Zhao, Vincent Y ; Luan, Yi ; Hall, Keith B ; Ming-Wei, Chang ; Yang, Yinfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26106659333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Coders</topic><topic>Domains</topic><topic>Retrieval</topic><topic>Scaling up</topic><toplevel>online_resources</toplevel><creatorcontrib>Ni, Jianmo</creatorcontrib><creatorcontrib>Qu, Chen</creatorcontrib><creatorcontrib>Lu, Jing</creatorcontrib><creatorcontrib>Dai, Zhuyun</creatorcontrib><creatorcontrib>Gustavo Hernández Ábrego</creatorcontrib><creatorcontrib>Ma, Ji</creatorcontrib><creatorcontrib>Zhao, Vincent Y</creatorcontrib><creatorcontrib>Luan, Yi</creatorcontrib><creatorcontrib>Hall, Keith B</creatorcontrib><creatorcontrib>Ming-Wei, Chang</creatorcontrib><creatorcontrib>Yang, Yinfei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Jianmo</au><au>Qu, Chen</au><au>Lu, Jing</au><au>Dai, Zhuyun</au><au>Gustavo Hernández Ábrego</au><au>Ma, Ji</au><au>Zhao, Vincent Y</au><au>Luan, Yi</au><au>Hall, Keith B</au><au>Ming-Wei, Chang</au><au>Yang, Yinfei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Large Dual Encoders Are Generalizable Retrievers</atitle><jtitle>arXiv.org</jtitle><date>2021-12-15</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>It has been shown that dual encoders trained on one domain often fail to generalize to other domains for retrieval tasks. One widespread belief is that the bottleneck layer of a dual encoder, where the final score is simply a dot-product between a query vector and a passage vector, is too limited to make dual encoders an effective retrieval model for out-of-domain generalization. In this paper, we challenge this belief by scaling up the size of the dual encoder model {\em while keeping the bottleneck embedding size fixed.} With multi-stage training, surprisingly, scaling up the model size brings significant improvement on a variety of retrieval tasks, especially for out-of-domain generalization. Experimental results show that our dual encoders, \textbf{G}eneralizable \textbf{T}5-based dense \textbf{R}etrievers (GTR), outperform %ColBERT~\cite{khattab2020colbert} and existing sparse and dense retrievers on the BEIR dataset~\cite{thakur2021beir} significantly. Most surprisingly, our ablation study finds that GTR is very data efficient, as it only needs 10\% of MS Marco supervised data to achieve the best out-of-domain performance. All the GTR models are released at https://tfhub.dev/google/collections/gtr/1.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2610665933
source Free E- Journals
subjects Ablation
Coders
Domains
Retrieval
Scaling up
title Large Dual Encoders Are Generalizable Retrievers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Large%20Dual%20Encoders%20Are%20Generalizable%20Retrievers&rft.jtitle=arXiv.org&rft.au=Ni,%20Jianmo&rft.date=2021-12-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2610665933%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610665933&rft_id=info:pmid/&rfr_iscdi=true