On two structures of the fractional q‐sequential integro‐differential boundary value problems

Our aim in the present research article is to discuss some existence aspects of solutions for two given fractional q‐sequential structures of an integro‐differential BVP in which the R.H.S. nonlinear term is regarded as two functions in both single‐valued and multivalued versions. In addition to thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2022-01, Vol.45 (2), p.618-639
Hauptverfasser: Duc Phuong, Nguyen, Etemad, Sina, Rezapour, Shahram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 639
container_issue 2
container_start_page 618
container_title Mathematical methods in the applied sciences
container_volume 45
creator Duc Phuong, Nguyen
Etemad, Sina
Rezapour, Shahram
description Our aim in the present research article is to discuss some existence aspects of solutions for two given fractional q‐sequential structures of an integro‐differential BVP in which the R.H.S. nonlinear term is regarded as two functions in both single‐valued and multivalued versions. In addition to this, we formulate the boundary conditions in the framework of the mixed q‐integro‐derivative conditions simultaneously. For such new fractional q‐sequential integro‐differential structures, we utilize suitable standard analytical methods attributed to Krasnoselskii on the sum of two operators. In the final stage, we design two simulative examples to check the consistency of findings in the context of the proposed techniques.
doi_str_mv 10.1002/mma.7800
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610482321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610482321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-f0641eb53040e1aa164ac8d6f7c4ec5f425ea1a804aca1f507a11d2ebc4061d33</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJmXGcR5dVxUui6gbWluPYkCqJW9uh6o5P4Bv5ElzaLavRXB3NXB1CrhEmCMDuuk5OihLghIwQptMEeZGfkhFgAQlnyM_JhfcrACgR2YjIZU_D1lIf3KDC4LSn1tDwoalxUoXG9rKlm5-vb683g-5DE9emD_rd2RjWjTHaHePKDn0t3Y5-ynbQdO1s1erOX5IzI1uvr45zTN4e7l_nT8nL8vF5PntJFJumkBjIOeoqS4GDRikx51KVdW4KxbXKDGeZlihLiLFEk0EhEWumK8UhxzpNx-TmcDc-jlV9ECs7uFjfC5Yj8JKlDCN1e6CUs947bcTaNV1sLRDEXqCIAsVeYESTA7ptWr37lxOLxeyP_wXF6XUK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610482321</pqid></control><display><type>article</type><title>On two structures of the fractional q‐sequential integro‐differential boundary value problems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Duc Phuong, Nguyen ; Etemad, Sina ; Rezapour, Shahram</creator><creatorcontrib>Duc Phuong, Nguyen ; Etemad, Sina ; Rezapour, Shahram</creatorcontrib><description>Our aim in the present research article is to discuss some existence aspects of solutions for two given fractional q‐sequential structures of an integro‐differential BVP in which the R.H.S. nonlinear term is regarded as two functions in both single‐valued and multivalued versions. In addition to this, we formulate the boundary conditions in the framework of the mixed q‐integro‐derivative conditions simultaneously. For such new fractional q‐sequential integro‐differential structures, we utilize suitable standard analytical methods attributed to Krasnoselskii on the sum of two operators. In the final stage, we design two simulative examples to check the consistency of findings in the context of the proposed techniques.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7800</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; boundary value problem ; Boundary value problems ; inclusion version ; Mathematical analysis ; Operators (mathematics) ; q‐calculus ; q‐sequential integro‐differential equation</subject><ispartof>Mathematical methods in the applied sciences, 2022-01, Vol.45 (2), p.618-639</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-f0641eb53040e1aa164ac8d6f7c4ec5f425ea1a804aca1f507a11d2ebc4061d33</citedby><cites>FETCH-LOGICAL-c2930-f0641eb53040e1aa164ac8d6f7c4ec5f425ea1a804aca1f507a11d2ebc4061d33</cites><orcidid>0000-0003-3463-2607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7800$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7800$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Duc Phuong, Nguyen</creatorcontrib><creatorcontrib>Etemad, Sina</creatorcontrib><creatorcontrib>Rezapour, Shahram</creatorcontrib><title>On two structures of the fractional q‐sequential integro‐differential boundary value problems</title><title>Mathematical methods in the applied sciences</title><description>Our aim in the present research article is to discuss some existence aspects of solutions for two given fractional q‐sequential structures of an integro‐differential BVP in which the R.H.S. nonlinear term is regarded as two functions in both single‐valued and multivalued versions. In addition to this, we formulate the boundary conditions in the framework of the mixed q‐integro‐derivative conditions simultaneously. For such new fractional q‐sequential integro‐differential structures, we utilize suitable standard analytical methods attributed to Krasnoselskii on the sum of two operators. In the final stage, we design two simulative examples to check the consistency of findings in the context of the proposed techniques.</description><subject>Boundary conditions</subject><subject>boundary value problem</subject><subject>Boundary value problems</subject><subject>inclusion version</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>q‐calculus</subject><subject>q‐sequential integro‐differential equation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJmXGcR5dVxUui6gbWluPYkCqJW9uh6o5P4Bv5ElzaLavRXB3NXB1CrhEmCMDuuk5OihLghIwQptMEeZGfkhFgAQlnyM_JhfcrACgR2YjIZU_D1lIf3KDC4LSn1tDwoalxUoXG9rKlm5-vb683g-5DE9emD_rd2RjWjTHaHePKDn0t3Y5-ynbQdO1s1erOX5IzI1uvr45zTN4e7l_nT8nL8vF5PntJFJumkBjIOeoqS4GDRikx51KVdW4KxbXKDGeZlihLiLFEk0EhEWumK8UhxzpNx-TmcDc-jlV9ECs7uFjfC5Yj8JKlDCN1e6CUs947bcTaNV1sLRDEXqCIAsVeYESTA7ptWr37lxOLxeyP_wXF6XUK</recordid><startdate>20220130</startdate><enddate>20220130</enddate><creator>Duc Phuong, Nguyen</creator><creator>Etemad, Sina</creator><creator>Rezapour, Shahram</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-3463-2607</orcidid></search><sort><creationdate>20220130</creationdate><title>On two structures of the fractional q‐sequential integro‐differential boundary value problems</title><author>Duc Phuong, Nguyen ; Etemad, Sina ; Rezapour, Shahram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-f0641eb53040e1aa164ac8d6f7c4ec5f425ea1a804aca1f507a11d2ebc4061d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>boundary value problem</topic><topic>Boundary value problems</topic><topic>inclusion version</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>q‐calculus</topic><topic>q‐sequential integro‐differential equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duc Phuong, Nguyen</creatorcontrib><creatorcontrib>Etemad, Sina</creatorcontrib><creatorcontrib>Rezapour, Shahram</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duc Phuong, Nguyen</au><au>Etemad, Sina</au><au>Rezapour, Shahram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On two structures of the fractional q‐sequential integro‐differential boundary value problems</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2022-01-30</date><risdate>2022</risdate><volume>45</volume><issue>2</issue><spage>618</spage><epage>639</epage><pages>618-639</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>Our aim in the present research article is to discuss some existence aspects of solutions for two given fractional q‐sequential structures of an integro‐differential BVP in which the R.H.S. nonlinear term is regarded as two functions in both single‐valued and multivalued versions. In addition to this, we formulate the boundary conditions in the framework of the mixed q‐integro‐derivative conditions simultaneously. For such new fractional q‐sequential integro‐differential structures, we utilize suitable standard analytical methods attributed to Krasnoselskii on the sum of two operators. In the final stage, we design two simulative examples to check the consistency of findings in the context of the proposed techniques.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7800</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3463-2607</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2022-01, Vol.45 (2), p.618-639
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2610482321
source Wiley Online Library Journals Frontfile Complete
subjects Boundary conditions
boundary value problem
Boundary value problems
inclusion version
Mathematical analysis
Operators (mathematics)
q‐calculus
q‐sequential integro‐differential equation
title On two structures of the fractional q‐sequential integro‐differential boundary value problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20two%20structures%20of%20the%20fractional%20q%E2%80%90sequential%20integro%E2%80%90differential%20boundary%20value%20problems&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Duc%20Phuong,%20Nguyen&rft.date=2022-01-30&rft.volume=45&rft.issue=2&rft.spage=618&rft.epage=639&rft.pages=618-639&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7800&rft_dat=%3Cproquest_cross%3E2610482321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610482321&rft_id=info:pmid/&rfr_iscdi=true