On two structures of the fractional q‐sequential integro‐differential boundary value problems
Our aim in the present research article is to discuss some existence aspects of solutions for two given fractional q‐sequential structures of an integro‐differential BVP in which the R.H.S. nonlinear term is regarded as two functions in both single‐valued and multivalued versions. In addition to thi...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2022-01, Vol.45 (2), p.618-639 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 639 |
---|---|
container_issue | 2 |
container_start_page | 618 |
container_title | Mathematical methods in the applied sciences |
container_volume | 45 |
creator | Duc Phuong, Nguyen Etemad, Sina Rezapour, Shahram |
description | Our aim in the present research article is to discuss some existence aspects of solutions for two given fractional q‐sequential structures of an integro‐differential BVP in which the R.H.S. nonlinear term is regarded as two functions in both single‐valued and multivalued versions. In addition to this, we formulate the boundary conditions in the framework of the mixed q‐integro‐derivative conditions simultaneously. For such new fractional q‐sequential integro‐differential structures, we utilize suitable standard analytical methods attributed to Krasnoselskii on the sum of two operators. In the final stage, we design two simulative examples to check the consistency of findings in the context of the proposed techniques. |
doi_str_mv | 10.1002/mma.7800 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610482321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610482321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-f0641eb53040e1aa164ac8d6f7c4ec5f425ea1a804aca1f507a11d2ebc4061d33</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJmXGcR5dVxUui6gbWluPYkCqJW9uh6o5P4Bv5ElzaLavRXB3NXB1CrhEmCMDuuk5OihLghIwQptMEeZGfkhFgAQlnyM_JhfcrACgR2YjIZU_D1lIf3KDC4LSn1tDwoalxUoXG9rKlm5-vb683g-5DE9emD_rd2RjWjTHaHePKDn0t3Y5-ynbQdO1s1erOX5IzI1uvr45zTN4e7l_nT8nL8vF5PntJFJumkBjIOeoqS4GDRikx51KVdW4KxbXKDGeZlihLiLFEk0EhEWumK8UhxzpNx-TmcDc-jlV9ECs7uFjfC5Yj8JKlDCN1e6CUs947bcTaNV1sLRDEXqCIAsVeYESTA7ptWr37lxOLxeyP_wXF6XUK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610482321</pqid></control><display><type>article</type><title>On two structures of the fractional q‐sequential integro‐differential boundary value problems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Duc Phuong, Nguyen ; Etemad, Sina ; Rezapour, Shahram</creator><creatorcontrib>Duc Phuong, Nguyen ; Etemad, Sina ; Rezapour, Shahram</creatorcontrib><description>Our aim in the present research article is to discuss some existence aspects of solutions for two given fractional q‐sequential structures of an integro‐differential BVP in which the R.H.S. nonlinear term is regarded as two functions in both single‐valued and multivalued versions. In addition to this, we formulate the boundary conditions in the framework of the mixed q‐integro‐derivative conditions simultaneously. For such new fractional q‐sequential integro‐differential structures, we utilize suitable standard analytical methods attributed to Krasnoselskii on the sum of two operators. In the final stage, we design two simulative examples to check the consistency of findings in the context of the proposed techniques.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7800</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; boundary value problem ; Boundary value problems ; inclusion version ; Mathematical analysis ; Operators (mathematics) ; q‐calculus ; q‐sequential integro‐differential equation</subject><ispartof>Mathematical methods in the applied sciences, 2022-01, Vol.45 (2), p.618-639</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-f0641eb53040e1aa164ac8d6f7c4ec5f425ea1a804aca1f507a11d2ebc4061d33</citedby><cites>FETCH-LOGICAL-c2930-f0641eb53040e1aa164ac8d6f7c4ec5f425ea1a804aca1f507a11d2ebc4061d33</cites><orcidid>0000-0003-3463-2607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7800$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7800$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Duc Phuong, Nguyen</creatorcontrib><creatorcontrib>Etemad, Sina</creatorcontrib><creatorcontrib>Rezapour, Shahram</creatorcontrib><title>On two structures of the fractional q‐sequential integro‐differential boundary value problems</title><title>Mathematical methods in the applied sciences</title><description>Our aim in the present research article is to discuss some existence aspects of solutions for two given fractional q‐sequential structures of an integro‐differential BVP in which the R.H.S. nonlinear term is regarded as two functions in both single‐valued and multivalued versions. In addition to this, we formulate the boundary conditions in the framework of the mixed q‐integro‐derivative conditions simultaneously. For such new fractional q‐sequential integro‐differential structures, we utilize suitable standard analytical methods attributed to Krasnoselskii on the sum of two operators. In the final stage, we design two simulative examples to check the consistency of findings in the context of the proposed techniques.</description><subject>Boundary conditions</subject><subject>boundary value problem</subject><subject>Boundary value problems</subject><subject>inclusion version</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>q‐calculus</subject><subject>q‐sequential integro‐differential equation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJmXGcR5dVxUui6gbWluPYkCqJW9uh6o5P4Bv5ElzaLavRXB3NXB1CrhEmCMDuuk5OihLghIwQptMEeZGfkhFgAQlnyM_JhfcrACgR2YjIZU_D1lIf3KDC4LSn1tDwoalxUoXG9rKlm5-vb683g-5DE9emD_rd2RjWjTHaHePKDn0t3Y5-ynbQdO1s1erOX5IzI1uvr45zTN4e7l_nT8nL8vF5PntJFJumkBjIOeoqS4GDRikx51KVdW4KxbXKDGeZlihLiLFEk0EhEWumK8UhxzpNx-TmcDc-jlV9ECs7uFjfC5Yj8JKlDCN1e6CUs947bcTaNV1sLRDEXqCIAsVeYESTA7ptWr37lxOLxeyP_wXF6XUK</recordid><startdate>20220130</startdate><enddate>20220130</enddate><creator>Duc Phuong, Nguyen</creator><creator>Etemad, Sina</creator><creator>Rezapour, Shahram</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-3463-2607</orcidid></search><sort><creationdate>20220130</creationdate><title>On two structures of the fractional q‐sequential integro‐differential boundary value problems</title><author>Duc Phuong, Nguyen ; Etemad, Sina ; Rezapour, Shahram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-f0641eb53040e1aa164ac8d6f7c4ec5f425ea1a804aca1f507a11d2ebc4061d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>boundary value problem</topic><topic>Boundary value problems</topic><topic>inclusion version</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>q‐calculus</topic><topic>q‐sequential integro‐differential equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duc Phuong, Nguyen</creatorcontrib><creatorcontrib>Etemad, Sina</creatorcontrib><creatorcontrib>Rezapour, Shahram</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duc Phuong, Nguyen</au><au>Etemad, Sina</au><au>Rezapour, Shahram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On two structures of the fractional q‐sequential integro‐differential boundary value problems</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2022-01-30</date><risdate>2022</risdate><volume>45</volume><issue>2</issue><spage>618</spage><epage>639</epage><pages>618-639</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>Our aim in the present research article is to discuss some existence aspects of solutions for two given fractional q‐sequential structures of an integro‐differential BVP in which the R.H.S. nonlinear term is regarded as two functions in both single‐valued and multivalued versions. In addition to this, we formulate the boundary conditions in the framework of the mixed q‐integro‐derivative conditions simultaneously. For such new fractional q‐sequential integro‐differential structures, we utilize suitable standard analytical methods attributed to Krasnoselskii on the sum of two operators. In the final stage, we design two simulative examples to check the consistency of findings in the context of the proposed techniques.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7800</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3463-2607</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2022-01, Vol.45 (2), p.618-639 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2610482321 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Boundary conditions boundary value problem Boundary value problems inclusion version Mathematical analysis Operators (mathematics) q‐calculus q‐sequential integro‐differential equation |
title | On two structures of the fractional q‐sequential integro‐differential boundary value problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20two%20structures%20of%20the%20fractional%20q%E2%80%90sequential%20integro%E2%80%90differential%20boundary%20value%20problems&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Duc%20Phuong,%20Nguyen&rft.date=2022-01-30&rft.volume=45&rft.issue=2&rft.spage=618&rft.epage=639&rft.pages=618-639&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7800&rft_dat=%3Cproquest_cross%3E2610482321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610482321&rft_id=info:pmid/&rfr_iscdi=true |