Interaction-Aware Trajectory Prediction and Planning for Autonomous Vehicles in Forced Merge Scenarios

Merging is, in general, a challenging task for both human drivers and autonomous vehicles, especially in dense traffic, because the merging vehicle typically needs to interact with other vehicles to identify or create a gap and safely merge into. In this paper, we consider the problem of autonomous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-12
Hauptverfasser: Liu, Kaiwen, Li, Nan, Tseng, H Eric, Kolmanovsky, Ilya, Girard, Anouck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Kaiwen
Li, Nan
Tseng, H Eric
Kolmanovsky, Ilya
Girard, Anouck
description Merging is, in general, a challenging task for both human drivers and autonomous vehicles, especially in dense traffic, because the merging vehicle typically needs to interact with other vehicles to identify or create a gap and safely merge into. In this paper, we consider the problem of autonomous vehicle control for forced merge scenarios. We propose a novel game-theoretic controller, called the Leader-Follower Game Controller (LFGC), in which the interactions between the autonomous ego vehicle and other vehicles with a priori uncertain driving intentions is modeled as a partially observable leader-follower game. The LFGC estimates the other vehicles' intentions online based on observed trajectories, and then predicts their future trajectories and plans the ego vehicle's own trajectory using Model Predictive Control (MPC) to simultaneously achieve probabilistically guaranteed safety and merging objectives. To verify the performance of LFGC, we test it in simulations and with the NGSIM data, where the LFGC demonstrates a high success rate of 97.5% in merging.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2610233609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610233609</sourcerecordid><originalsourceid>FETCH-proquest_journals_26102336093</originalsourceid><addsrcrecordid>eNqNjkEKwjAQAIMgWNQ_LHguxFSrHosoehAExauEdKspdVc3KeLvFfEBnuYwc5iOSkyWjdP5xJieGoZQa61NPjPTaZaoaksRxbromdLiaQXhKLZGF1lesBcs_deBpRL2jSXydIGKBYo2MvGN2wAnvHrXYABPsGZxWMIO5YJwcEhWPIeB6la2CTj8sa9G69VxuUnvwo8WQzzX3Ap91NnkY_0ZzvUi-696A-ZxRz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610233609</pqid></control><display><type>article</type><title>Interaction-Aware Trajectory Prediction and Planning for Autonomous Vehicles in Forced Merge Scenarios</title><source>Free E- Journals</source><creator>Liu, Kaiwen ; Li, Nan ; Tseng, H Eric ; Kolmanovsky, Ilya ; Girard, Anouck</creator><creatorcontrib>Liu, Kaiwen ; Li, Nan ; Tseng, H Eric ; Kolmanovsky, Ilya ; Girard, Anouck</creatorcontrib><description>Merging is, in general, a challenging task for both human drivers and autonomous vehicles, especially in dense traffic, because the merging vehicle typically needs to interact with other vehicles to identify or create a gap and safely merge into. In this paper, we consider the problem of autonomous vehicle control for forced merge scenarios. We propose a novel game-theoretic controller, called the Leader-Follower Game Controller (LFGC), in which the interactions between the autonomous ego vehicle and other vehicles with a priori uncertain driving intentions is modeled as a partially observable leader-follower game. The LFGC estimates the other vehicles' intentions online based on observed trajectories, and then predicts their future trajectories and plans the ego vehicle's own trajectory using Model Predictive Control (MPC) to simultaneously achieve probabilistically guaranteed safety and merging objectives. To verify the performance of LFGC, we test it in simulations and with the NGSIM data, where the LFGC demonstrates a high success rate of 97.5% in merging.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autonomous vehicles ; Controllers ; Game theory ; Predictive control ; Trajectory control ; Trajectory planning ; Vehicles</subject><ispartof>arXiv.org, 2021-12</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Liu, Kaiwen</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Tseng, H Eric</creatorcontrib><creatorcontrib>Kolmanovsky, Ilya</creatorcontrib><creatorcontrib>Girard, Anouck</creatorcontrib><title>Interaction-Aware Trajectory Prediction and Planning for Autonomous Vehicles in Forced Merge Scenarios</title><title>arXiv.org</title><description>Merging is, in general, a challenging task for both human drivers and autonomous vehicles, especially in dense traffic, because the merging vehicle typically needs to interact with other vehicles to identify or create a gap and safely merge into. In this paper, we consider the problem of autonomous vehicle control for forced merge scenarios. We propose a novel game-theoretic controller, called the Leader-Follower Game Controller (LFGC), in which the interactions between the autonomous ego vehicle and other vehicles with a priori uncertain driving intentions is modeled as a partially observable leader-follower game. The LFGC estimates the other vehicles' intentions online based on observed trajectories, and then predicts their future trajectories and plans the ego vehicle's own trajectory using Model Predictive Control (MPC) to simultaneously achieve probabilistically guaranteed safety and merging objectives. To verify the performance of LFGC, we test it in simulations and with the NGSIM data, where the LFGC demonstrates a high success rate of 97.5% in merging.</description><subject>Autonomous vehicles</subject><subject>Controllers</subject><subject>Game theory</subject><subject>Predictive control</subject><subject>Trajectory control</subject><subject>Trajectory planning</subject><subject>Vehicles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjkEKwjAQAIMgWNQ_LHguxFSrHosoehAExauEdKspdVc3KeLvFfEBnuYwc5iOSkyWjdP5xJieGoZQa61NPjPTaZaoaksRxbromdLiaQXhKLZGF1lesBcs_deBpRL2jSXydIGKBYo2MvGN2wAnvHrXYABPsGZxWMIO5YJwcEhWPIeB6la2CTj8sa9G69VxuUnvwo8WQzzX3Ap91NnkY_0ZzvUi-696A-ZxRz8</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Liu, Kaiwen</creator><creator>Li, Nan</creator><creator>Tseng, H Eric</creator><creator>Kolmanovsky, Ilya</creator><creator>Girard, Anouck</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211214</creationdate><title>Interaction-Aware Trajectory Prediction and Planning for Autonomous Vehicles in Forced Merge Scenarios</title><author>Liu, Kaiwen ; Li, Nan ; Tseng, H Eric ; Kolmanovsky, Ilya ; Girard, Anouck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26102336093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autonomous vehicles</topic><topic>Controllers</topic><topic>Game theory</topic><topic>Predictive control</topic><topic>Trajectory control</topic><topic>Trajectory planning</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kaiwen</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Tseng, H Eric</creatorcontrib><creatorcontrib>Kolmanovsky, Ilya</creatorcontrib><creatorcontrib>Girard, Anouck</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kaiwen</au><au>Li, Nan</au><au>Tseng, H Eric</au><au>Kolmanovsky, Ilya</au><au>Girard, Anouck</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Interaction-Aware Trajectory Prediction and Planning for Autonomous Vehicles in Forced Merge Scenarios</atitle><jtitle>arXiv.org</jtitle><date>2021-12-14</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Merging is, in general, a challenging task for both human drivers and autonomous vehicles, especially in dense traffic, because the merging vehicle typically needs to interact with other vehicles to identify or create a gap and safely merge into. In this paper, we consider the problem of autonomous vehicle control for forced merge scenarios. We propose a novel game-theoretic controller, called the Leader-Follower Game Controller (LFGC), in which the interactions between the autonomous ego vehicle and other vehicles with a priori uncertain driving intentions is modeled as a partially observable leader-follower game. The LFGC estimates the other vehicles' intentions online based on observed trajectories, and then predicts their future trajectories and plans the ego vehicle's own trajectory using Model Predictive Control (MPC) to simultaneously achieve probabilistically guaranteed safety and merging objectives. To verify the performance of LFGC, we test it in simulations and with the NGSIM data, where the LFGC demonstrates a high success rate of 97.5% in merging.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2610233609
source Free E- Journals
subjects Autonomous vehicles
Controllers
Game theory
Predictive control
Trajectory control
Trajectory planning
Vehicles
title Interaction-Aware Trajectory Prediction and Planning for Autonomous Vehicles in Forced Merge Scenarios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Interaction-Aware%20Trajectory%20Prediction%20and%20Planning%20for%20Autonomous%20Vehicles%20in%20Forced%20Merge%20Scenarios&rft.jtitle=arXiv.org&rft.au=Liu,%20Kaiwen&rft.date=2021-12-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2610233609%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610233609&rft_id=info:pmid/&rfr_iscdi=true