Breaking the Interaction Wall: A DLPU-Centric Deep Learning Computing System
Due to the broad successes of deep learning, many CPU-centric artificial intelligent computing systems employ specialized devices such as GPUs, FPGAs, and ASICs, which can be named as Deep Learning Processing Units (DLPUs), for processing computation-intensive deep learning tasks. The separation bet...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2022-01, Vol.71 (1), p.209-222 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 222 |
---|---|
container_issue | 1 |
container_start_page | 209 |
container_title | IEEE transactions on computers |
container_volume | 71 |
creator | Du, Zidong Guo, Qi Zhao, Yongwei Zeng, Xi Li, Ling Cheng, Limin Xu, Zhiwei Sun, Ninghui Chen, Yunji |
description | Due to the broad successes of deep learning, many CPU-centric artificial intelligent computing systems employ specialized devices such as GPUs, FPGAs, and ASICs, which can be named as Deep Learning Processing Units (DLPUs), for processing computation-intensive deep learning tasks. The separation between the scalar control operations mapped on CPUs and the vector computation operations mapped on DLPUs causes the frequent and costly interactions between CPUs and DLPUs, leading to the Interaction Wall . Moreover, the increasing algorithm complexity and DLPU computation speed would further aggravate the interaction wall substantially. To break the interaction wall, we propose a novel DLPU-centric deep learning computing system consisting of an exception-oriented programming (EOP) model and the architectural support of CPULESS DLPU . The EOP model processes scalar control operations of a deep learning task as exception handlers to maximally avoid stalling the crucial and dominated vector computation operations. Together with the CPULESS DLPU which integrates a scalar processing unit (SPU) for scalar control operations and the parallel processing unit (PPU) for vector computation operations into a fused pipeline, the proposed DLPU-centric system can cost-effectively leverage the EOP model to execute the two kinds of operations simultaneously without disturbing each other. Compared with a state-of-the-art commodity CPU-centric system with discrete V100 GPU via PCIe bus, experimental results show that our DLPU-centric system achieves 10.30× better performance and 92.99 percent energy savings, respectively. Moreover, compared with a CPU-centric version of DLPU system where the SPU serves as the host with integrated PPU, the proposed DLPU-centric system still achieves 15.60 percent better performance from avoided interactions. |
doi_str_mv | 10.1109/TC.2020.3044245 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2610171222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9292952</ieee_id><sourcerecordid>2610171222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-670cbe9de8d8c4b3e7da13cc33a2592042414f2fa922c39cbf1f07c0d3cb62b13</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmNw5sClEudujpO2C7fR8TGpEkhs4hilqQsdW1vS7LB_T6tNyAf78D629TB2y2HCOajpKp0gIEwESIkyOmMjHkVJqFQUn7MRAJ-FSki4ZFddtwGAGEGNWPboyPxU9VfgvylY1p6csb5q6uDTbLcPwTxYZO_rMKXau8oGC6I2yMi4ekDSZtfu_TB9HDpPu2t2UZptRzenPmbr56dV-hpmby_LdJ6FFqXwYZyAzUkVNCtmVuaCksJwYa0QBiOF0L_PZYmlUYhWKJuXvITEQiFsHmPOxZjdH_e2rvndU-f1ptm7uj-pMebAE46IfWp6TFnXdJ2jUreu2hl30Bz0oEyvUj0o0ydlPXF3JCoi-k8r7CtC8Qdl42XJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610171222</pqid></control><display><type>article</type><title>Breaking the Interaction Wall: A DLPU-Centric Deep Learning Computing System</title><source>IEEE Electronic Library (IEL)</source><creator>Du, Zidong ; Guo, Qi ; Zhao, Yongwei ; Zeng, Xi ; Li, Ling ; Cheng, Limin ; Xu, Zhiwei ; Sun, Ninghui ; Chen, Yunji</creator><creatorcontrib>Du, Zidong ; Guo, Qi ; Zhao, Yongwei ; Zeng, Xi ; Li, Ling ; Cheng, Limin ; Xu, Zhiwei ; Sun, Ninghui ; Chen, Yunji</creatorcontrib><description>Due to the broad successes of deep learning, many CPU-centric artificial intelligent computing systems employ specialized devices such as GPUs, FPGAs, and ASICs, which can be named as Deep Learning Processing Units (DLPUs), for processing computation-intensive deep learning tasks. The separation between the scalar control operations mapped on CPUs and the vector computation operations mapped on DLPUs causes the frequent and costly interactions between CPUs and DLPUs, leading to the Interaction Wall . Moreover, the increasing algorithm complexity and DLPU computation speed would further aggravate the interaction wall substantially. To break the interaction wall, we propose a novel DLPU-centric deep learning computing system consisting of an exception-oriented programming (EOP) model and the architectural support of CPULESS DLPU . The EOP model processes scalar control operations of a deep learning task as exception handlers to maximally avoid stalling the crucial and dominated vector computation operations. Together with the CPULESS DLPU which integrates a scalar processing unit (SPU) for scalar control operations and the parallel processing unit (PPU) for vector computation operations into a fused pipeline, the proposed DLPU-centric system can cost-effectively leverage the EOP model to execute the two kinds of operations simultaneously without disturbing each other. Compared with a state-of-the-art commodity CPU-centric system with discrete V100 GPU via PCIe bus, experimental results show that our DLPU-centric system achieves 10.30× better performance and 92.99 percent energy savings, respectively. Moreover, compared with a CPU-centric version of DLPU system where the SPU serves as the host with integrated PPU, the proposed DLPU-centric system still achieves 15.60 percent better performance from avoided interactions.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2020.3044245</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Central Processing Unit ; Central processing units ; Cognitive tasks ; Computation ; Computational modeling ; CPUs ; Deep learning ; Graphics processing units ; interaction wall ; Machine learning ; Neural net accelerators ; Parallel processing ; Pipelines ; Process control ; Runtime ; Stalling ; system architectures ; Task analysis</subject><ispartof>IEEE transactions on computers, 2022-01, Vol.71 (1), p.209-222</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-670cbe9de8d8c4b3e7da13cc33a2592042414f2fa922c39cbf1f07c0d3cb62b13</cites><orcidid>0000-0003-3925-5185 ; 0000-0002-5503-4457 ; 0000-0001-8877-9052 ; 0000-0002-1480-7265 ; 0000-0002-4631-7017 ; 0000-0002-7603-4210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9292952$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9292952$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Du, Zidong</creatorcontrib><creatorcontrib>Guo, Qi</creatorcontrib><creatorcontrib>Zhao, Yongwei</creatorcontrib><creatorcontrib>Zeng, Xi</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Cheng, Limin</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Sun, Ninghui</creatorcontrib><creatorcontrib>Chen, Yunji</creatorcontrib><title>Breaking the Interaction Wall: A DLPU-Centric Deep Learning Computing System</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>Due to the broad successes of deep learning, many CPU-centric artificial intelligent computing systems employ specialized devices such as GPUs, FPGAs, and ASICs, which can be named as Deep Learning Processing Units (DLPUs), for processing computation-intensive deep learning tasks. The separation between the scalar control operations mapped on CPUs and the vector computation operations mapped on DLPUs causes the frequent and costly interactions between CPUs and DLPUs, leading to the Interaction Wall . Moreover, the increasing algorithm complexity and DLPU computation speed would further aggravate the interaction wall substantially. To break the interaction wall, we propose a novel DLPU-centric deep learning computing system consisting of an exception-oriented programming (EOP) model and the architectural support of CPULESS DLPU . The EOP model processes scalar control operations of a deep learning task as exception handlers to maximally avoid stalling the crucial and dominated vector computation operations. Together with the CPULESS DLPU which integrates a scalar processing unit (SPU) for scalar control operations and the parallel processing unit (PPU) for vector computation operations into a fused pipeline, the proposed DLPU-centric system can cost-effectively leverage the EOP model to execute the two kinds of operations simultaneously without disturbing each other. Compared with a state-of-the-art commodity CPU-centric system with discrete V100 GPU via PCIe bus, experimental results show that our DLPU-centric system achieves 10.30× better performance and 92.99 percent energy savings, respectively. Moreover, compared with a CPU-centric version of DLPU system where the SPU serves as the host with integrated PPU, the proposed DLPU-centric system still achieves 15.60 percent better performance from avoided interactions.</description><subject>Algorithms</subject><subject>Central Processing Unit</subject><subject>Central processing units</subject><subject>Cognitive tasks</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>CPUs</subject><subject>Deep learning</subject><subject>Graphics processing units</subject><subject>interaction wall</subject><subject>Machine learning</subject><subject>Neural net accelerators</subject><subject>Parallel processing</subject><subject>Pipelines</subject><subject>Process control</subject><subject>Runtime</subject><subject>Stalling</subject><subject>system architectures</subject><subject>Task analysis</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmNw5sClEudujpO2C7fR8TGpEkhs4hilqQsdW1vS7LB_T6tNyAf78D629TB2y2HCOajpKp0gIEwESIkyOmMjHkVJqFQUn7MRAJ-FSki4ZFddtwGAGEGNWPboyPxU9VfgvylY1p6csb5q6uDTbLcPwTxYZO_rMKXau8oGC6I2yMi4ekDSZtfu_TB9HDpPu2t2UZptRzenPmbr56dV-hpmby_LdJ6FFqXwYZyAzUkVNCtmVuaCksJwYa0QBiOF0L_PZYmlUYhWKJuXvITEQiFsHmPOxZjdH_e2rvndU-f1ptm7uj-pMebAE46IfWp6TFnXdJ2jUreu2hl30Bz0oEyvUj0o0ydlPXF3JCoi-k8r7CtC8Qdl42XJ</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Du, Zidong</creator><creator>Guo, Qi</creator><creator>Zhao, Yongwei</creator><creator>Zeng, Xi</creator><creator>Li, Ling</creator><creator>Cheng, Limin</creator><creator>Xu, Zhiwei</creator><creator>Sun, Ninghui</creator><creator>Chen, Yunji</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3925-5185</orcidid><orcidid>https://orcid.org/0000-0002-5503-4457</orcidid><orcidid>https://orcid.org/0000-0001-8877-9052</orcidid><orcidid>https://orcid.org/0000-0002-1480-7265</orcidid><orcidid>https://orcid.org/0000-0002-4631-7017</orcidid><orcidid>https://orcid.org/0000-0002-7603-4210</orcidid></search><sort><creationdate>20220101</creationdate><title>Breaking the Interaction Wall: A DLPU-Centric Deep Learning Computing System</title><author>Du, Zidong ; Guo, Qi ; Zhao, Yongwei ; Zeng, Xi ; Li, Ling ; Cheng, Limin ; Xu, Zhiwei ; Sun, Ninghui ; Chen, Yunji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-670cbe9de8d8c4b3e7da13cc33a2592042414f2fa922c39cbf1f07c0d3cb62b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Central Processing Unit</topic><topic>Central processing units</topic><topic>Cognitive tasks</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>CPUs</topic><topic>Deep learning</topic><topic>Graphics processing units</topic><topic>interaction wall</topic><topic>Machine learning</topic><topic>Neural net accelerators</topic><topic>Parallel processing</topic><topic>Pipelines</topic><topic>Process control</topic><topic>Runtime</topic><topic>Stalling</topic><topic>system architectures</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Zidong</creatorcontrib><creatorcontrib>Guo, Qi</creatorcontrib><creatorcontrib>Zhao, Yongwei</creatorcontrib><creatorcontrib>Zeng, Xi</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Cheng, Limin</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Sun, Ninghui</creatorcontrib><creatorcontrib>Chen, Yunji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Zidong</au><au>Guo, Qi</au><au>Zhao, Yongwei</au><au>Zeng, Xi</au><au>Li, Ling</au><au>Cheng, Limin</au><au>Xu, Zhiwei</au><au>Sun, Ninghui</au><au>Chen, Yunji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking the Interaction Wall: A DLPU-Centric Deep Learning Computing System</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>71</volume><issue>1</issue><spage>209</spage><epage>222</epage><pages>209-222</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>Due to the broad successes of deep learning, many CPU-centric artificial intelligent computing systems employ specialized devices such as GPUs, FPGAs, and ASICs, which can be named as Deep Learning Processing Units (DLPUs), for processing computation-intensive deep learning tasks. The separation between the scalar control operations mapped on CPUs and the vector computation operations mapped on DLPUs causes the frequent and costly interactions between CPUs and DLPUs, leading to the Interaction Wall . Moreover, the increasing algorithm complexity and DLPU computation speed would further aggravate the interaction wall substantially. To break the interaction wall, we propose a novel DLPU-centric deep learning computing system consisting of an exception-oriented programming (EOP) model and the architectural support of CPULESS DLPU . The EOP model processes scalar control operations of a deep learning task as exception handlers to maximally avoid stalling the crucial and dominated vector computation operations. Together with the CPULESS DLPU which integrates a scalar processing unit (SPU) for scalar control operations and the parallel processing unit (PPU) for vector computation operations into a fused pipeline, the proposed DLPU-centric system can cost-effectively leverage the EOP model to execute the two kinds of operations simultaneously without disturbing each other. Compared with a state-of-the-art commodity CPU-centric system with discrete V100 GPU via PCIe bus, experimental results show that our DLPU-centric system achieves 10.30× better performance and 92.99 percent energy savings, respectively. Moreover, compared with a CPU-centric version of DLPU system where the SPU serves as the host with integrated PPU, the proposed DLPU-centric system still achieves 15.60 percent better performance from avoided interactions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2020.3044245</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3925-5185</orcidid><orcidid>https://orcid.org/0000-0002-5503-4457</orcidid><orcidid>https://orcid.org/0000-0001-8877-9052</orcidid><orcidid>https://orcid.org/0000-0002-1480-7265</orcidid><orcidid>https://orcid.org/0000-0002-4631-7017</orcidid><orcidid>https://orcid.org/0000-0002-7603-4210</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2022-01, Vol.71 (1), p.209-222 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_proquest_journals_2610171222 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Central Processing Unit Central processing units Cognitive tasks Computation Computational modeling CPUs Deep learning Graphics processing units interaction wall Machine learning Neural net accelerators Parallel processing Pipelines Process control Runtime Stalling system architectures Task analysis |
title | Breaking the Interaction Wall: A DLPU-Centric Deep Learning Computing System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20the%20Interaction%20Wall:%20A%20DLPU-Centric%20Deep%20Learning%20Computing%20System&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Du,%20Zidong&rft.date=2022-01-01&rft.volume=71&rft.issue=1&rft.spage=209&rft.epage=222&rft.pages=209-222&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2020.3044245&rft_dat=%3Cproquest_RIE%3E2610171222%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610171222&rft_id=info:pmid/&rft_ieee_id=9292952&rfr_iscdi=true |