An Ensemble Machine Learning Botnet Detection Framework Based on Noise Filtering

During the past decade, one of the most serious cyber threats has been the growth of botnet. Since botnet attacks combine the characteristics of many malicious attacks, they have complex attack behaviors and communication patterns. In order to improve the detection rate, many researchers use machine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wangji Wanglu Jishu Xuekan = Journal of Internet Technology 2021-01, Vol.22 (6), p.1347-1357
Hauptverfasser: Liu, Tzong-Jye, Lin, Tze-Shiun, Chen, Ching-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1357
container_issue 6
container_start_page 1347
container_title Wangji Wanglu Jishu Xuekan = Journal of Internet Technology
container_volume 22
creator Liu, Tzong-Jye
Lin, Tze-Shiun
Chen, Ching-Wen
description During the past decade, one of the most serious cyber threats has been the growth of botnet. Since botnet attacks combine the characteristics of many malicious attacks, they have complex attack behaviors and communication patterns. In order to improve the detection rate, many researchers use machine learning techniques. In this paper, we proposed an ensemble classification framework based on noise filtering to improve detection performance. The experimental results show that the proposed framework improves the detection rate and reduces the false alarm rate. We also compare the proposed classification model with other ensemble classification models. The experimental results also show that the classification model has the highest accuracy and lower false alarm rate.
doi_str_mv 10.53106/160792642021112206012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610115801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610115801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-eb36ea7a395c20413aa611f09783bd97789e3bdc33def4370ded0380c257eaf93</originalsourceid><addsrcrecordid>eNptkM1OwzAQhC0EElXpKyBLnAO7dmMnx7a0Ban8HOAcOc4GDK1TbFeItyelHDhw2tHstzvSMHaOcJlLBHWFCnQp1FiAQEQhQAGKIzbY-9l-cfxHn7JRjK6Gns2FFDhgjxPP5z7Spl4TvzP21XniKzLBO__Cp13ylPg1JbLJdZ4vgtnQZxfe-dREanhv3XcuEl-4daLQ35yxk9asI41-55A9L-ZPs5ts9bC8nU1WmRUSUka1VGS0kWVuBYxRGqMQWyh1Ieum1LooqRdWyobasdTQUAOyACtyTaYt5ZBdHP5uQ_exo5iqt24XfB9ZCYWAmBeAPaUOlA1djIHaahvcxoSvCqH6KbD6t0D5DUeuYaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610115801</pqid></control><display><type>article</type><title>An Ensemble Machine Learning Botnet Detection Framework Based on Noise Filtering</title><source>Alma/SFX Local Collection</source><creator>Liu, Tzong-Jye ; Lin, Tze-Shiun ; Chen, Ching-Wen</creator><creatorcontrib>Liu, Tzong-Jye ; Lin, Tze-Shiun ; Chen, Ching-Wen</creatorcontrib><description>During the past decade, one of the most serious cyber threats has been the growth of botnet. Since botnet attacks combine the characteristics of many malicious attacks, they have complex attack behaviors and communication patterns. In order to improve the detection rate, many researchers use machine learning techniques. In this paper, we proposed an ensemble classification framework based on noise filtering to improve detection performance. The experimental results show that the proposed framework improves the detection rate and reduces the false alarm rate. We also compare the proposed classification model with other ensemble classification models. The experimental results also show that the classification model has the highest accuracy and lower false alarm rate.</description><identifier>ISSN: 1607-9264</identifier><identifier>EISSN: 1607-9264</identifier><identifier>EISSN: 2079-4029</identifier><identifier>DOI: 10.53106/160792642021112206012</identifier><language>eng</language><publisher>Hualien: National Dong Hwa University, Computer Center</publisher><subject>Classification ; Cybersecurity ; False alarms ; Filtration ; Machine learning ; Malware</subject><ispartof>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology, 2021-01, Vol.22 (6), p.1347-1357</ispartof><rights>Copyright National Dong Hwa University, Computer Center 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Liu, Tzong-Jye</creatorcontrib><creatorcontrib>Lin, Tze-Shiun</creatorcontrib><creatorcontrib>Chen, Ching-Wen</creatorcontrib><title>An Ensemble Machine Learning Botnet Detection Framework Based on Noise Filtering</title><title>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology</title><description>During the past decade, one of the most serious cyber threats has been the growth of botnet. Since botnet attacks combine the characteristics of many malicious attacks, they have complex attack behaviors and communication patterns. In order to improve the detection rate, many researchers use machine learning techniques. In this paper, we proposed an ensemble classification framework based on noise filtering to improve detection performance. The experimental results show that the proposed framework improves the detection rate and reduces the false alarm rate. We also compare the proposed classification model with other ensemble classification models. The experimental results also show that the classification model has the highest accuracy and lower false alarm rate.</description><subject>Classification</subject><subject>Cybersecurity</subject><subject>False alarms</subject><subject>Filtration</subject><subject>Machine learning</subject><subject>Malware</subject><issn>1607-9264</issn><issn>1607-9264</issn><issn>2079-4029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkM1OwzAQhC0EElXpKyBLnAO7dmMnx7a0Ban8HOAcOc4GDK1TbFeItyelHDhw2tHstzvSMHaOcJlLBHWFCnQp1FiAQEQhQAGKIzbY-9l-cfxHn7JRjK6Gns2FFDhgjxPP5z7Spl4TvzP21XniKzLBO__Cp13ylPg1JbLJdZ4vgtnQZxfe-dREanhv3XcuEl-4daLQ35yxk9asI41-55A9L-ZPs5ts9bC8nU1WmRUSUka1VGS0kWVuBYxRGqMQWyh1Ieum1LooqRdWyobasdTQUAOyACtyTaYt5ZBdHP5uQ_exo5iqt24XfB9ZCYWAmBeAPaUOlA1djIHaahvcxoSvCqH6KbD6t0D5DUeuYaQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Liu, Tzong-Jye</creator><creator>Lin, Tze-Shiun</creator><creator>Chen, Ching-Wen</creator><general>National Dong Hwa University, Computer Center</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>An Ensemble Machine Learning Botnet Detection Framework Based on Noise Filtering</title><author>Liu, Tzong-Jye ; Lin, Tze-Shiun ; Chen, Ching-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-eb36ea7a395c20413aa611f09783bd97789e3bdc33def4370ded0380c257eaf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Cybersecurity</topic><topic>False alarms</topic><topic>Filtration</topic><topic>Machine learning</topic><topic>Malware</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tzong-Jye</creatorcontrib><creatorcontrib>Lin, Tze-Shiun</creatorcontrib><creatorcontrib>Chen, Ching-Wen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tzong-Jye</au><au>Lin, Tze-Shiun</au><au>Chen, Ching-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ensemble Machine Learning Botnet Detection Framework Based on Noise Filtering</atitle><jtitle>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>22</volume><issue>6</issue><spage>1347</spage><epage>1357</epage><pages>1347-1357</pages><issn>1607-9264</issn><eissn>1607-9264</eissn><eissn>2079-4029</eissn><abstract>During the past decade, one of the most serious cyber threats has been the growth of botnet. Since botnet attacks combine the characteristics of many malicious attacks, they have complex attack behaviors and communication patterns. In order to improve the detection rate, many researchers use machine learning techniques. In this paper, we proposed an ensemble classification framework based on noise filtering to improve detection performance. The experimental results show that the proposed framework improves the detection rate and reduces the false alarm rate. We also compare the proposed classification model with other ensemble classification models. The experimental results also show that the classification model has the highest accuracy and lower false alarm rate.</abstract><cop>Hualien</cop><pub>National Dong Hwa University, Computer Center</pub><doi>10.53106/160792642021112206012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1607-9264
ispartof Wangji Wanglu Jishu Xuekan = Journal of Internet Technology, 2021-01, Vol.22 (6), p.1347-1357
issn 1607-9264
1607-9264
2079-4029
language eng
recordid cdi_proquest_journals_2610115801
source Alma/SFX Local Collection
subjects Classification
Cybersecurity
False alarms
Filtration
Machine learning
Malware
title An Ensemble Machine Learning Botnet Detection Framework Based on Noise Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ensemble%20Machine%20Learning%20Botnet%20Detection%20Framework%20Based%20on%20Noise%20Filtering&rft.jtitle=Wangji%20Wanglu%20Jishu%20Xuekan%20=%20Journal%20of%20Internet%20Technology&rft.au=Liu,%20Tzong-Jye&rft.date=2021-01-01&rft.volume=22&rft.issue=6&rft.spage=1347&rft.epage=1357&rft.pages=1347-1357&rft.issn=1607-9264&rft.eissn=1607-9264&rft_id=info:doi/10.53106/160792642021112206012&rft_dat=%3Cproquest_cross%3E2610115801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610115801&rft_id=info:pmid/&rfr_iscdi=true