A novel multi population based particle swarm optimization for feature selection

Feature selection is an integral part of any machine learning system and the success of such systems highly depends on the relevance of features with the target domain. Feature selection can be classified as NP-Hard problem since a large number of possible solutions exists especially when the featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2021-05, Vol.219, p.106894, Article 106894
Hauptverfasser: Kılıç, Fatih, Kaya, Yasin, Yildirim, Serdar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106894
container_title Knowledge-based systems
container_volume 219
creator Kılıç, Fatih
Kaya, Yasin
Yildirim, Serdar
description Feature selection is an integral part of any machine learning system and the success of such systems highly depends on the relevance of features with the target domain. Feature selection can be classified as NP-Hard problem since a large number of possible solutions exists especially when the feature space is high dimensional. In addition to standard feature selection algorithms, evolutionary algorithms have also yielded promising results. In this paper, a novel multi population based particle swarm optimization (MPPSO) is proposed for feature selection. In this method, multi population start with initial solutions generated by random and Relieff based initialization and searches solution space simultaneously using both populations. 26 UCI and 3 ASU datasets are used to evaluate the performance of the method. The results show that MPPSO generally achieves better average classification accuracies than the other algorithms. Specifically, for the datasets with a large number of features, MPPSO achieves the smallest number of selected features with highest classification accuracies compared to other algorithms.
doi_str_mv 10.1016/j.knosys.2021.106894
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610115592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095070512100157X</els_id><sourcerecordid>2610115592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-f090f3aca7b4d30e17deef420b6e62e66d588cecbafbb1d679056ef90428652e3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-Aw8Bz10n2TZtL8Ky6Cos6EHPIU0nkNo2NWlX1l9vlnr2NPDmvRneR8gtgxUDJu6b1WfvwjGsOHAWJVGU6RlZsCLnSZ5CeU4WUGaQ5JCxS3IVQgMAnLNiQd42tHcHbGk3taOlgxumVo3W9bRSAWs6KD9a3SIN38p31A2j7ezP7DDOU4NqnHxcY4v6pF6TC6PagDd_c0k-nh7ft8_J_nX3st3sE50CjImBEsxaaZVXab0GZHmNaFIOlUDBUYg6KwqNulKmqlgt8hIygaaElBci47hekrv57uDd14RhlI2bfB9fSi4iFZZlJY-udHZp70LwaOTgbaf8UTKQJ3aykTM7eWInZ3Yx9jDHMDY4WPQyaIu9xtr6WFPWzv5_4BfPgntT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610115592</pqid></control><display><type>article</type><title>A novel multi population based particle swarm optimization for feature selection</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kılıç, Fatih ; Kaya, Yasin ; Yildirim, Serdar</creator><creatorcontrib>Kılıç, Fatih ; Kaya, Yasin ; Yildirim, Serdar</creatorcontrib><description>Feature selection is an integral part of any machine learning system and the success of such systems highly depends on the relevance of features with the target domain. Feature selection can be classified as NP-Hard problem since a large number of possible solutions exists especially when the feature space is high dimensional. In addition to standard feature selection algorithms, evolutionary algorithms have also yielded promising results. In this paper, a novel multi population based particle swarm optimization (MPPSO) is proposed for feature selection. In this method, multi population start with initial solutions generated by random and Relieff based initialization and searches solution space simultaneously using both populations. 26 UCI and 3 ASU datasets are used to evaluate the performance of the method. The results show that MPPSO generally achieves better average classification accuracies than the other algorithms. Specifically, for the datasets with a large number of features, MPPSO achieves the smallest number of selected features with highest classification accuracies compared to other algorithms.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2021.106894</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Classification ; Datasets ; Evolutionary algorithms ; Feature selection ; Machine learning ; Meta-heuristics ; Multi-population initialization ; Particle swarm optimization ; Solution space ; Transfer functions</subject><ispartof>Knowledge-based systems, 2021-05, Vol.219, p.106894, Article 106894</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. May 11, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-f090f3aca7b4d30e17deef420b6e62e66d588cecbafbb1d679056ef90428652e3</citedby><cites>FETCH-LOGICAL-c400t-f090f3aca7b4d30e17deef420b6e62e66d588cecbafbb1d679056ef90428652e3</cites><orcidid>0000-0002-9074-0189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2021.106894$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kılıç, Fatih</creatorcontrib><creatorcontrib>Kaya, Yasin</creatorcontrib><creatorcontrib>Yildirim, Serdar</creatorcontrib><title>A novel multi population based particle swarm optimization for feature selection</title><title>Knowledge-based systems</title><description>Feature selection is an integral part of any machine learning system and the success of such systems highly depends on the relevance of features with the target domain. Feature selection can be classified as NP-Hard problem since a large number of possible solutions exists especially when the feature space is high dimensional. In addition to standard feature selection algorithms, evolutionary algorithms have also yielded promising results. In this paper, a novel multi population based particle swarm optimization (MPPSO) is proposed for feature selection. In this method, multi population start with initial solutions generated by random and Relieff based initialization and searches solution space simultaneously using both populations. 26 UCI and 3 ASU datasets are used to evaluate the performance of the method. The results show that MPPSO generally achieves better average classification accuracies than the other algorithms. Specifically, for the datasets with a large number of features, MPPSO achieves the smallest number of selected features with highest classification accuracies compared to other algorithms.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Datasets</subject><subject>Evolutionary algorithms</subject><subject>Feature selection</subject><subject>Machine learning</subject><subject>Meta-heuristics</subject><subject>Multi-population initialization</subject><subject>Particle swarm optimization</subject><subject>Solution space</subject><subject>Transfer functions</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-Aw8Bz10n2TZtL8Ky6Cos6EHPIU0nkNo2NWlX1l9vlnr2NPDmvRneR8gtgxUDJu6b1WfvwjGsOHAWJVGU6RlZsCLnSZ5CeU4WUGaQ5JCxS3IVQgMAnLNiQd42tHcHbGk3taOlgxumVo3W9bRSAWs6KD9a3SIN38p31A2j7ezP7DDOU4NqnHxcY4v6pF6TC6PagDd_c0k-nh7ft8_J_nX3st3sE50CjImBEsxaaZVXab0GZHmNaFIOlUDBUYg6KwqNulKmqlgt8hIygaaElBci47hekrv57uDd14RhlI2bfB9fSi4iFZZlJY-udHZp70LwaOTgbaf8UTKQJ3aykTM7eWInZ3Yx9jDHMDY4WPQyaIu9xtr6WFPWzv5_4BfPgntT</recordid><startdate>20210511</startdate><enddate>20210511</enddate><creator>Kılıç, Fatih</creator><creator>Kaya, Yasin</creator><creator>Yildirim, Serdar</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9074-0189</orcidid></search><sort><creationdate>20210511</creationdate><title>A novel multi population based particle swarm optimization for feature selection</title><author>Kılıç, Fatih ; Kaya, Yasin ; Yildirim, Serdar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-f090f3aca7b4d30e17deef420b6e62e66d588cecbafbb1d679056ef90428652e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Datasets</topic><topic>Evolutionary algorithms</topic><topic>Feature selection</topic><topic>Machine learning</topic><topic>Meta-heuristics</topic><topic>Multi-population initialization</topic><topic>Particle swarm optimization</topic><topic>Solution space</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kılıç, Fatih</creatorcontrib><creatorcontrib>Kaya, Yasin</creatorcontrib><creatorcontrib>Yildirim, Serdar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kılıç, Fatih</au><au>Kaya, Yasin</au><au>Yildirim, Serdar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel multi population based particle swarm optimization for feature selection</atitle><jtitle>Knowledge-based systems</jtitle><date>2021-05-11</date><risdate>2021</risdate><volume>219</volume><spage>106894</spage><pages>106894-</pages><artnum>106894</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Feature selection is an integral part of any machine learning system and the success of such systems highly depends on the relevance of features with the target domain. Feature selection can be classified as NP-Hard problem since a large number of possible solutions exists especially when the feature space is high dimensional. In addition to standard feature selection algorithms, evolutionary algorithms have also yielded promising results. In this paper, a novel multi population based particle swarm optimization (MPPSO) is proposed for feature selection. In this method, multi population start with initial solutions generated by random and Relieff based initialization and searches solution space simultaneously using both populations. 26 UCI and 3 ASU datasets are used to evaluate the performance of the method. The results show that MPPSO generally achieves better average classification accuracies than the other algorithms. Specifically, for the datasets with a large number of features, MPPSO achieves the smallest number of selected features with highest classification accuracies compared to other algorithms.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2021.106894</doi><orcidid>https://orcid.org/0000-0002-9074-0189</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2021-05, Vol.219, p.106894, Article 106894
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2610115592
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Classification
Datasets
Evolutionary algorithms
Feature selection
Machine learning
Meta-heuristics
Multi-population initialization
Particle swarm optimization
Solution space
Transfer functions
title A novel multi population based particle swarm optimization for feature selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20multi%20population%20based%20particle%20swarm%20optimization%20for%20feature%20selection&rft.jtitle=Knowledge-based%20systems&rft.au=K%C4%B1l%C4%B1%C3%A7,%20Fatih&rft.date=2021-05-11&rft.volume=219&rft.spage=106894&rft.pages=106894-&rft.artnum=106894&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2021.106894&rft_dat=%3Cproquest_cross%3E2610115592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610115592&rft_id=info:pmid/&rft_els_id=S095070512100157X&rfr_iscdi=true