A novel multi population based particle swarm optimization for feature selection
Feature selection is an integral part of any machine learning system and the success of such systems highly depends on the relevance of features with the target domain. Feature selection can be classified as NP-Hard problem since a large number of possible solutions exists especially when the featur...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2021-05, Vol.219, p.106894, Article 106894 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106894 |
container_title | Knowledge-based systems |
container_volume | 219 |
creator | Kılıç, Fatih Kaya, Yasin Yildirim, Serdar |
description | Feature selection is an integral part of any machine learning system and the success of such systems highly depends on the relevance of features with the target domain. Feature selection can be classified as NP-Hard problem since a large number of possible solutions exists especially when the feature space is high dimensional. In addition to standard feature selection algorithms, evolutionary algorithms have also yielded promising results. In this paper, a novel multi population based particle swarm optimization (MPPSO) is proposed for feature selection. In this method, multi population start with initial solutions generated by random and Relieff based initialization and searches solution space simultaneously using both populations. 26 UCI and 3 ASU datasets are used to evaluate the performance of the method. The results show that MPPSO generally achieves better average classification accuracies than the other algorithms. Specifically, for the datasets with a large number of features, MPPSO achieves the smallest number of selected features with highest classification accuracies compared to other algorithms. |
doi_str_mv | 10.1016/j.knosys.2021.106894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610115592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095070512100157X</els_id><sourcerecordid>2610115592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-f090f3aca7b4d30e17deef420b6e62e66d588cecbafbb1d679056ef90428652e3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-Aw8Bz10n2TZtL8Ky6Cos6EHPIU0nkNo2NWlX1l9vlnr2NPDmvRneR8gtgxUDJu6b1WfvwjGsOHAWJVGU6RlZsCLnSZ5CeU4WUGaQ5JCxS3IVQgMAnLNiQd42tHcHbGk3taOlgxumVo3W9bRSAWs6KD9a3SIN38p31A2j7ezP7DDOU4NqnHxcY4v6pF6TC6PagDd_c0k-nh7ft8_J_nX3st3sE50CjImBEsxaaZVXab0GZHmNaFIOlUDBUYg6KwqNulKmqlgt8hIygaaElBci47hekrv57uDd14RhlI2bfB9fSi4iFZZlJY-udHZp70LwaOTgbaf8UTKQJ3aykTM7eWInZ3Yx9jDHMDY4WPQyaIu9xtr6WFPWzv5_4BfPgntT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610115592</pqid></control><display><type>article</type><title>A novel multi population based particle swarm optimization for feature selection</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kılıç, Fatih ; Kaya, Yasin ; Yildirim, Serdar</creator><creatorcontrib>Kılıç, Fatih ; Kaya, Yasin ; Yildirim, Serdar</creatorcontrib><description>Feature selection is an integral part of any machine learning system and the success of such systems highly depends on the relevance of features with the target domain. Feature selection can be classified as NP-Hard problem since a large number of possible solutions exists especially when the feature space is high dimensional. In addition to standard feature selection algorithms, evolutionary algorithms have also yielded promising results. In this paper, a novel multi population based particle swarm optimization (MPPSO) is proposed for feature selection. In this method, multi population start with initial solutions generated by random and Relieff based initialization and searches solution space simultaneously using both populations. 26 UCI and 3 ASU datasets are used to evaluate the performance of the method. The results show that MPPSO generally achieves better average classification accuracies than the other algorithms. Specifically, for the datasets with a large number of features, MPPSO achieves the smallest number of selected features with highest classification accuracies compared to other algorithms.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2021.106894</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Classification ; Datasets ; Evolutionary algorithms ; Feature selection ; Machine learning ; Meta-heuristics ; Multi-population initialization ; Particle swarm optimization ; Solution space ; Transfer functions</subject><ispartof>Knowledge-based systems, 2021-05, Vol.219, p.106894, Article 106894</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. May 11, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-f090f3aca7b4d30e17deef420b6e62e66d588cecbafbb1d679056ef90428652e3</citedby><cites>FETCH-LOGICAL-c400t-f090f3aca7b4d30e17deef420b6e62e66d588cecbafbb1d679056ef90428652e3</cites><orcidid>0000-0002-9074-0189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2021.106894$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kılıç, Fatih</creatorcontrib><creatorcontrib>Kaya, Yasin</creatorcontrib><creatorcontrib>Yildirim, Serdar</creatorcontrib><title>A novel multi population based particle swarm optimization for feature selection</title><title>Knowledge-based systems</title><description>Feature selection is an integral part of any machine learning system and the success of such systems highly depends on the relevance of features with the target domain. Feature selection can be classified as NP-Hard problem since a large number of possible solutions exists especially when the feature space is high dimensional. In addition to standard feature selection algorithms, evolutionary algorithms have also yielded promising results. In this paper, a novel multi population based particle swarm optimization (MPPSO) is proposed for feature selection. In this method, multi population start with initial solutions generated by random and Relieff based initialization and searches solution space simultaneously using both populations. 26 UCI and 3 ASU datasets are used to evaluate the performance of the method. The results show that MPPSO generally achieves better average classification accuracies than the other algorithms. Specifically, for the datasets with a large number of features, MPPSO achieves the smallest number of selected features with highest classification accuracies compared to other algorithms.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Datasets</subject><subject>Evolutionary algorithms</subject><subject>Feature selection</subject><subject>Machine learning</subject><subject>Meta-heuristics</subject><subject>Multi-population initialization</subject><subject>Particle swarm optimization</subject><subject>Solution space</subject><subject>Transfer functions</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-Aw8Bz10n2TZtL8Ky6Cos6EHPIU0nkNo2NWlX1l9vlnr2NPDmvRneR8gtgxUDJu6b1WfvwjGsOHAWJVGU6RlZsCLnSZ5CeU4WUGaQ5JCxS3IVQgMAnLNiQd42tHcHbGk3taOlgxumVo3W9bRSAWs6KD9a3SIN38p31A2j7ezP7DDOU4NqnHxcY4v6pF6TC6PagDd_c0k-nh7ft8_J_nX3st3sE50CjImBEsxaaZVXab0GZHmNaFIOlUDBUYg6KwqNulKmqlgt8hIygaaElBci47hekrv57uDd14RhlI2bfB9fSi4iFZZlJY-udHZp70LwaOTgbaf8UTKQJ3aykTM7eWInZ3Yx9jDHMDY4WPQyaIu9xtr6WFPWzv5_4BfPgntT</recordid><startdate>20210511</startdate><enddate>20210511</enddate><creator>Kılıç, Fatih</creator><creator>Kaya, Yasin</creator><creator>Yildirim, Serdar</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9074-0189</orcidid></search><sort><creationdate>20210511</creationdate><title>A novel multi population based particle swarm optimization for feature selection</title><author>Kılıç, Fatih ; Kaya, Yasin ; Yildirim, Serdar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-f090f3aca7b4d30e17deef420b6e62e66d588cecbafbb1d679056ef90428652e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Datasets</topic><topic>Evolutionary algorithms</topic><topic>Feature selection</topic><topic>Machine learning</topic><topic>Meta-heuristics</topic><topic>Multi-population initialization</topic><topic>Particle swarm optimization</topic><topic>Solution space</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kılıç, Fatih</creatorcontrib><creatorcontrib>Kaya, Yasin</creatorcontrib><creatorcontrib>Yildirim, Serdar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kılıç, Fatih</au><au>Kaya, Yasin</au><au>Yildirim, Serdar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel multi population based particle swarm optimization for feature selection</atitle><jtitle>Knowledge-based systems</jtitle><date>2021-05-11</date><risdate>2021</risdate><volume>219</volume><spage>106894</spage><pages>106894-</pages><artnum>106894</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Feature selection is an integral part of any machine learning system and the success of such systems highly depends on the relevance of features with the target domain. Feature selection can be classified as NP-Hard problem since a large number of possible solutions exists especially when the feature space is high dimensional. In addition to standard feature selection algorithms, evolutionary algorithms have also yielded promising results. In this paper, a novel multi population based particle swarm optimization (MPPSO) is proposed for feature selection. In this method, multi population start with initial solutions generated by random and Relieff based initialization and searches solution space simultaneously using both populations. 26 UCI and 3 ASU datasets are used to evaluate the performance of the method. The results show that MPPSO generally achieves better average classification accuracies than the other algorithms. Specifically, for the datasets with a large number of features, MPPSO achieves the smallest number of selected features with highest classification accuracies compared to other algorithms.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2021.106894</doi><orcidid>https://orcid.org/0000-0002-9074-0189</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2021-05, Vol.219, p.106894, Article 106894 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_2610115592 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Classification Datasets Evolutionary algorithms Feature selection Machine learning Meta-heuristics Multi-population initialization Particle swarm optimization Solution space Transfer functions |
title | A novel multi population based particle swarm optimization for feature selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20multi%20population%20based%20particle%20swarm%20optimization%20for%20feature%20selection&rft.jtitle=Knowledge-based%20systems&rft.au=K%C4%B1l%C4%B1%C3%A7,%20Fatih&rft.date=2021-05-11&rft.volume=219&rft.spage=106894&rft.pages=106894-&rft.artnum=106894&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2021.106894&rft_dat=%3Cproquest_cross%3E2610115592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610115592&rft_id=info:pmid/&rft_els_id=S095070512100157X&rfr_iscdi=true |