Frame-based Neural Network for Machine Reading Comprehension

Machine Reading Comprehension (MRC) is one of the most challenging tasks in Natural Language Understanding (NLU). In particular, MRC systems typically answer a question by only utilizing the information contained in a given piece of text passage itself, while human beings can easily understand the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2021-05, Vol.219, p.106889, Article 106889
Hauptverfasser: Guo, Shaoru, Guan, Yong, Tan, Hongye, Li, Ru, Li, Xiaoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106889
container_title Knowledge-based systems
container_volume 219
creator Guo, Shaoru
Guan, Yong
Tan, Hongye
Li, Ru
Li, Xiaoli
description Machine Reading Comprehension (MRC) is one of the most challenging tasks in Natural Language Understanding (NLU). In particular, MRC systems typically answer a question by only utilizing the information contained in a given piece of text passage itself, while human beings can easily understand the meanings of the passage based on their background knowledge. To bridge the gap, we propose a novel Frame-based Neural Network for Machine Reading Comprehension(FNN-MRC) method, which employs Frame semantic knowledge to facilitate question answering. Specifically, different from existing Frame based methods that only model lexical units (LUs), our FNN-MRC has a Frame representation model, which utilizes both LUs in Frame and Frame-to-Frame (F-to-F) relations, designed to model Frames and sentences (in passage) together with attention schema. In addition, FNN-MRC has a Frame-based Sentence Representation (FSR) model, which is able to integrate multiple-Frame semantic information to obtain much better sentence representation. As such, FNN-MRC explicitly leverages the above Frame knowledge to assist its semantic understanding and representation. Extensive experiments demonstrate that our FNN-MRC method is able to achieve better results than existing state-of-the-art techniques across multiple datasets.
doi_str_mv 10.1016/j.knosys.2021.106889
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610114888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705121001520</els_id><sourcerecordid>2610114888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4266755221581e815e7a28c991bc6e47b48689e4bdc90268e1d920d1c3106d993</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKv_wMOC561JNptNQAQpVoWqIHoO2eTVZtsmNdkq_femrGdPA483M8yH0CXBE4IJv-4mKx_SPk0opiSfuBDyCI2IaGjZMCyP0QjLGpcNrskpOkupwxhTSsQI3cyi3kDZ6gS2eIFd1Oss_U-Iq2IRYvGszdJ5KN5AW-c_i2nYbCMswScX_Dk6Weh1gos_HaOP2f379LGcvz48Te_mpakq1peMct7UdS6sBQFBamg0FUZK0hoOrGmZ4EICa62RmHIBxEqKLTFVnmKlrMboasjdxvC1g9SrLuyiz5WK8kyAMCFE_mLDl4khpQgLtY1uo-NeEawOnFSnBk7qwEkNnLLtdrBBXvDtIKpkHHgD1kUwvbLB_R_wCy2pcN0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610114888</pqid></control><display><type>article</type><title>Frame-based Neural Network for Machine Reading Comprehension</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Guo, Shaoru ; Guan, Yong ; Tan, Hongye ; Li, Ru ; Li, Xiaoli</creator><creatorcontrib>Guo, Shaoru ; Guan, Yong ; Tan, Hongye ; Li, Ru ; Li, Xiaoli</creatorcontrib><description>Machine Reading Comprehension (MRC) is one of the most challenging tasks in Natural Language Understanding (NLU). In particular, MRC systems typically answer a question by only utilizing the information contained in a given piece of text passage itself, while human beings can easily understand the meanings of the passage based on their background knowledge. To bridge the gap, we propose a novel Frame-based Neural Network for Machine Reading Comprehension(FNN-MRC) method, which employs Frame semantic knowledge to facilitate question answering. Specifically, different from existing Frame based methods that only model lexical units (LUs), our FNN-MRC has a Frame representation model, which utilizes both LUs in Frame and Frame-to-Frame (F-to-F) relations, designed to model Frames and sentences (in passage) together with attention schema. In addition, FNN-MRC has a Frame-based Sentence Representation (FSR) model, which is able to integrate multiple-Frame semantic information to obtain much better sentence representation. As such, FNN-MRC explicitly leverages the above Frame knowledge to assist its semantic understanding and representation. Extensive experiments demonstrate that our FNN-MRC method is able to achieve better results than existing state-of-the-art techniques across multiple datasets.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2021.106889</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Frame representation ; Frame semantics ; Machine reading comprehension ; Multiple-Frame semantic integration ; Neural networks ; Questions ; Reading comprehension ; Representations ; Semantics ; Sentences</subject><ispartof>Knowledge-based systems, 2021-05, Vol.219, p.106889, Article 106889</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. May 11, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4266755221581e815e7a28c991bc6e47b48689e4bdc90268e1d920d1c3106d993</citedby><cites>FETCH-LOGICAL-c334t-4266755221581e815e7a28c991bc6e47b48689e4bdc90268e1d920d1c3106d993</cites><orcidid>0000-0003-4130-3924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2021.106889$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Guo, Shaoru</creatorcontrib><creatorcontrib>Guan, Yong</creatorcontrib><creatorcontrib>Tan, Hongye</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><title>Frame-based Neural Network for Machine Reading Comprehension</title><title>Knowledge-based systems</title><description>Machine Reading Comprehension (MRC) is one of the most challenging tasks in Natural Language Understanding (NLU). In particular, MRC systems typically answer a question by only utilizing the information contained in a given piece of text passage itself, while human beings can easily understand the meanings of the passage based on their background knowledge. To bridge the gap, we propose a novel Frame-based Neural Network for Machine Reading Comprehension(FNN-MRC) method, which employs Frame semantic knowledge to facilitate question answering. Specifically, different from existing Frame based methods that only model lexical units (LUs), our FNN-MRC has a Frame representation model, which utilizes both LUs in Frame and Frame-to-Frame (F-to-F) relations, designed to model Frames and sentences (in passage) together with attention schema. In addition, FNN-MRC has a Frame-based Sentence Representation (FSR) model, which is able to integrate multiple-Frame semantic information to obtain much better sentence representation. As such, FNN-MRC explicitly leverages the above Frame knowledge to assist its semantic understanding and representation. Extensive experiments demonstrate that our FNN-MRC method is able to achieve better results than existing state-of-the-art techniques across multiple datasets.</description><subject>Frame representation</subject><subject>Frame semantics</subject><subject>Machine reading comprehension</subject><subject>Multiple-Frame semantic integration</subject><subject>Neural networks</subject><subject>Questions</subject><subject>Reading comprehension</subject><subject>Representations</subject><subject>Semantics</subject><subject>Sentences</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKv_wMOC561JNptNQAQpVoWqIHoO2eTVZtsmNdkq_femrGdPA483M8yH0CXBE4IJv-4mKx_SPk0opiSfuBDyCI2IaGjZMCyP0QjLGpcNrskpOkupwxhTSsQI3cyi3kDZ6gS2eIFd1Oss_U-Iq2IRYvGszdJ5KN5AW-c_i2nYbCMswScX_Dk6Weh1gos_HaOP2f379LGcvz48Te_mpakq1peMct7UdS6sBQFBamg0FUZK0hoOrGmZ4EICa62RmHIBxEqKLTFVnmKlrMboasjdxvC1g9SrLuyiz5WK8kyAMCFE_mLDl4khpQgLtY1uo-NeEawOnFSnBk7qwEkNnLLtdrBBXvDtIKpkHHgD1kUwvbLB_R_wCy2pcN0</recordid><startdate>20210511</startdate><enddate>20210511</enddate><creator>Guo, Shaoru</creator><creator>Guan, Yong</creator><creator>Tan, Hongye</creator><creator>Li, Ru</creator><creator>Li, Xiaoli</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4130-3924</orcidid></search><sort><creationdate>20210511</creationdate><title>Frame-based Neural Network for Machine Reading Comprehension</title><author>Guo, Shaoru ; Guan, Yong ; Tan, Hongye ; Li, Ru ; Li, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4266755221581e815e7a28c991bc6e47b48689e4bdc90268e1d920d1c3106d993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Frame representation</topic><topic>Frame semantics</topic><topic>Machine reading comprehension</topic><topic>Multiple-Frame semantic integration</topic><topic>Neural networks</topic><topic>Questions</topic><topic>Reading comprehension</topic><topic>Representations</topic><topic>Semantics</topic><topic>Sentences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Shaoru</creatorcontrib><creatorcontrib>Guan, Yong</creatorcontrib><creatorcontrib>Tan, Hongye</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Shaoru</au><au>Guan, Yong</au><au>Tan, Hongye</au><au>Li, Ru</au><au>Li, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frame-based Neural Network for Machine Reading Comprehension</atitle><jtitle>Knowledge-based systems</jtitle><date>2021-05-11</date><risdate>2021</risdate><volume>219</volume><spage>106889</spage><pages>106889-</pages><artnum>106889</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Machine Reading Comprehension (MRC) is one of the most challenging tasks in Natural Language Understanding (NLU). In particular, MRC systems typically answer a question by only utilizing the information contained in a given piece of text passage itself, while human beings can easily understand the meanings of the passage based on their background knowledge. To bridge the gap, we propose a novel Frame-based Neural Network for Machine Reading Comprehension(FNN-MRC) method, which employs Frame semantic knowledge to facilitate question answering. Specifically, different from existing Frame based methods that only model lexical units (LUs), our FNN-MRC has a Frame representation model, which utilizes both LUs in Frame and Frame-to-Frame (F-to-F) relations, designed to model Frames and sentences (in passage) together with attention schema. In addition, FNN-MRC has a Frame-based Sentence Representation (FSR) model, which is able to integrate multiple-Frame semantic information to obtain much better sentence representation. As such, FNN-MRC explicitly leverages the above Frame knowledge to assist its semantic understanding and representation. Extensive experiments demonstrate that our FNN-MRC method is able to achieve better results than existing state-of-the-art techniques across multiple datasets.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2021.106889</doi><orcidid>https://orcid.org/0000-0003-4130-3924</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2021-05, Vol.219, p.106889, Article 106889
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2610114888
source ScienceDirect Freedom Collection (Elsevier)
subjects Frame representation
Frame semantics
Machine reading comprehension
Multiple-Frame semantic integration
Neural networks
Questions
Reading comprehension
Representations
Semantics
Sentences
title Frame-based Neural Network for Machine Reading Comprehension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frame-based%20Neural%20Network%20for%20Machine%20Reading%20Comprehension&rft.jtitle=Knowledge-based%20systems&rft.au=Guo,%20Shaoru&rft.date=2021-05-11&rft.volume=219&rft.spage=106889&rft.pages=106889-&rft.artnum=106889&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2021.106889&rft_dat=%3Cproquest_cross%3E2610114888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610114888&rft_id=info:pmid/&rft_els_id=S0950705121001520&rfr_iscdi=true