Approximation of a Mean Field Game Problem with Caputo Time-Fractional Derivative
A mean field game model in the interpretation of optimal control is investigated theoretically and numerically. This is the problem of minimizing a non-convex and non-coercive objective functional controlled by a coefficient in the Fokker–Planck equation with a time-fractional derivative. The existe...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2021-12, Vol.42 (12), p.2876-2889 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2889 |
---|---|
container_issue | 12 |
container_start_page | 2876 |
container_title | Lobachevskii journal of mathematics |
container_volume | 42 |
creator | Lapin, A. Lapin, S. Zhang, S. |
description | A mean field game model in the interpretation of optimal control is investigated theoretically and numerically. This is the problem of minimizing a non-convex and non-coercive objective functional controlled by a coefficient in the Fokker–Planck equation with a time-fractional derivative. The existence of a weak solution to the problem posed is proved under an additional constraint on the smallness of the control function. The differential problem is approximated by the finite difference method, while the state equation is approximated by an efficiently implemented locally one-dimensional scheme. The existence of a solution to the finite-difference optimal control problem without additional constraints on the control function and discretization steps is proved. Stability estimates for the discrete state and adjoint state equations are given. The results of numerical experiments are presented for an applied problem. They demonstrate, among other things, the sensitivity of the solution to the order of the time-fractional derivative. |
doi_str_mv | 10.1134/S1995080221120234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610097110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610097110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ca7f242c8c822fe67ee8330d8dca65c6c7b8f47976aafb505c57ca97d1802aba3</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnP4A3wI-V3PTNkkfx3RTmKg4n8ttmmhHu9Skm_rvzZjgg_h0L5wPzjmEnAO7BEizq2coipwpxjkAZzzNDsgIFKikKAQ_jH-Ekx1-TE5CWLFIFEKMyNOk7737bDocGremzlKk9wbXdNaYtqZz7Ax99K5qTUc_muGNTrHfDI4um84kM496J8OWXhvfbKPH1pySI4ttMGc_d0xeZjfL6W2yeJjfTSeLRKcghkSjtDzjWmnFuTVCGqPSlNWq1ihyLbSslM1kIQWirXKW61xqLGQNsQRWmI7Jxd435n_fmDCUK7fxMUsouQDGCgnAIgv2LO1dCN7YsvexrP8qgZW75co_y0UN32tC5K5fjf91_l_0Dcutb1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610097110</pqid></control><display><type>article</type><title>Approximation of a Mean Field Game Problem with Caputo Time-Fractional Derivative</title><source>SpringerNature Journals</source><creator>Lapin, A. ; Lapin, S. ; Zhang, S.</creator><creatorcontrib>Lapin, A. ; Lapin, S. ; Zhang, S.</creatorcontrib><description>A mean field game model in the interpretation of optimal control is investigated theoretically and numerically. This is the problem of minimizing a non-convex and non-coercive objective functional controlled by a coefficient in the Fokker–Planck equation with a time-fractional derivative. The existence of a weak solution to the problem posed is proved under an additional constraint on the smallness of the control function. The differential problem is approximated by the finite difference method, while the state equation is approximated by an efficiently implemented locally one-dimensional scheme. The existence of a solution to the finite-difference optimal control problem without additional constraints on the control function and discretization steps is proved. Stability estimates for the discrete state and adjoint state equations are given. The results of numerical experiments are presented for an applied problem. They demonstrate, among other things, the sensitivity of the solution to the order of the time-fractional derivative.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080221120234</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Approximation ; Coercivity ; Control stability ; Derivatives ; Equations of state ; Finite difference method ; Fokker-Planck equation ; Geometry ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Optimal control ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2021-12, Vol.42 (12), p.2876-2889</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ca7f242c8c822fe67ee8330d8dca65c6c7b8f47976aafb505c57ca97d1802aba3</citedby><cites>FETCH-LOGICAL-c316t-ca7f242c8c822fe67ee8330d8dca65c6c7b8f47976aafb505c57ca97d1802aba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080221120234$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080221120234$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lapin, A.</creatorcontrib><creatorcontrib>Lapin, S.</creatorcontrib><creatorcontrib>Zhang, S.</creatorcontrib><title>Approximation of a Mean Field Game Problem with Caputo Time-Fractional Derivative</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>A mean field game model in the interpretation of optimal control is investigated theoretically and numerically. This is the problem of minimizing a non-convex and non-coercive objective functional controlled by a coefficient in the Fokker–Planck equation with a time-fractional derivative. The existence of a weak solution to the problem posed is proved under an additional constraint on the smallness of the control function. The differential problem is approximated by the finite difference method, while the state equation is approximated by an efficiently implemented locally one-dimensional scheme. The existence of a solution to the finite-difference optimal control problem without additional constraints on the control function and discretization steps is proved. Stability estimates for the discrete state and adjoint state equations are given. The results of numerical experiments are presented for an applied problem. They demonstrate, among other things, the sensitivity of the solution to the order of the time-fractional derivative.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Coercivity</subject><subject>Control stability</subject><subject>Derivatives</subject><subject>Equations of state</subject><subject>Finite difference method</subject><subject>Fokker-Planck equation</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimal control</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UF1LwzAUDaLgnP4A3wI-V3PTNkkfx3RTmKg4n8ttmmhHu9Skm_rvzZjgg_h0L5wPzjmEnAO7BEizq2coipwpxjkAZzzNDsgIFKikKAQ_jH-Ekx1-TE5CWLFIFEKMyNOk7737bDocGremzlKk9wbXdNaYtqZz7Ax99K5qTUc_muGNTrHfDI4um84kM496J8OWXhvfbKPH1pySI4ttMGc_d0xeZjfL6W2yeJjfTSeLRKcghkSjtDzjWmnFuTVCGqPSlNWq1ihyLbSslM1kIQWirXKW61xqLGQNsQRWmI7Jxd435n_fmDCUK7fxMUsouQDGCgnAIgv2LO1dCN7YsvexrP8qgZW75co_y0UN32tC5K5fjf91_l_0Dcutb1E</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Lapin, A.</creator><creator>Lapin, S.</creator><creator>Zhang, S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Approximation of a Mean Field Game Problem with Caputo Time-Fractional Derivative</title><author>Lapin, A. ; Lapin, S. ; Zhang, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ca7f242c8c822fe67ee8330d8dca65c6c7b8f47976aafb505c57ca97d1802aba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Coercivity</topic><topic>Control stability</topic><topic>Derivatives</topic><topic>Equations of state</topic><topic>Finite difference method</topic><topic>Fokker-Planck equation</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimal control</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapin, A.</creatorcontrib><creatorcontrib>Lapin, S.</creatorcontrib><creatorcontrib>Zhang, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapin, A.</au><au>Lapin, S.</au><au>Zhang, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation of a Mean Field Game Problem with Caputo Time-Fractional Derivative</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>42</volume><issue>12</issue><spage>2876</spage><epage>2889</epage><pages>2876-2889</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>A mean field game model in the interpretation of optimal control is investigated theoretically and numerically. This is the problem of minimizing a non-convex and non-coercive objective functional controlled by a coefficient in the Fokker–Planck equation with a time-fractional derivative. The existence of a weak solution to the problem posed is proved under an additional constraint on the smallness of the control function. The differential problem is approximated by the finite difference method, while the state equation is approximated by an efficiently implemented locally one-dimensional scheme. The existence of a solution to the finite-difference optimal control problem without additional constraints on the control function and discretization steps is proved. Stability estimates for the discrete state and adjoint state equations are given. The results of numerical experiments are presented for an applied problem. They demonstrate, among other things, the sensitivity of the solution to the order of the time-fractional derivative.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080221120234</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2021-12, Vol.42 (12), p.2876-2889 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2610097110 |
source | SpringerNature Journals |
subjects | Algebra Analysis Approximation Coercivity Control stability Derivatives Equations of state Finite difference method Fokker-Planck equation Geometry Mathematical analysis Mathematical Logic and Foundations Mathematics Mathematics and Statistics Optimal control Probability Theory and Stochastic Processes |
title | Approximation of a Mean Field Game Problem with Caputo Time-Fractional Derivative |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20of%20a%20Mean%20Field%20Game%20Problem%20with%20Caputo%20Time-Fractional%20Derivative&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Lapin,%20A.&rft.date=2021-12-01&rft.volume=42&rft.issue=12&rft.spage=2876&rft.epage=2889&rft.pages=2876-2889&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080221120234&rft_dat=%3Cproquest_cross%3E2610097110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610097110&rft_id=info:pmid/&rfr_iscdi=true |