Approximation of a Mean Field Game Problem with Caputo Time-Fractional Derivative

A mean field game model in the interpretation of optimal control is investigated theoretically and numerically. This is the problem of minimizing a non-convex and non-coercive objective functional controlled by a coefficient in the Fokker–Planck equation with a time-fractional derivative. The existe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2021-12, Vol.42 (12), p.2876-2889
Hauptverfasser: Lapin, A., Lapin, S., Zhang, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2889
container_issue 12
container_start_page 2876
container_title Lobachevskii journal of mathematics
container_volume 42
creator Lapin, A.
Lapin, S.
Zhang, S.
description A mean field game model in the interpretation of optimal control is investigated theoretically and numerically. This is the problem of minimizing a non-convex and non-coercive objective functional controlled by a coefficient in the Fokker–Planck equation with a time-fractional derivative. The existence of a weak solution to the problem posed is proved under an additional constraint on the smallness of the control function. The differential problem is approximated by the finite difference method, while the state equation is approximated by an efficiently implemented locally one-dimensional scheme. The existence of a solution to the finite-difference optimal control problem without additional constraints on the control function and discretization steps is proved. Stability estimates for the discrete state and adjoint state equations are given. The results of numerical experiments are presented for an applied problem. They demonstrate, among other things, the sensitivity of the solution to the order of the time-fractional derivative.
doi_str_mv 10.1134/S1995080221120234
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610097110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610097110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ca7f242c8c822fe67ee8330d8dca65c6c7b8f47976aafb505c57ca97d1802aba3</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnP4A3wI-V3PTNkkfx3RTmKg4n8ttmmhHu9Skm_rvzZjgg_h0L5wPzjmEnAO7BEizq2coipwpxjkAZzzNDsgIFKikKAQ_jH-Ekx1-TE5CWLFIFEKMyNOk7737bDocGremzlKk9wbXdNaYtqZz7Ax99K5qTUc_muGNTrHfDI4um84kM496J8OWXhvfbKPH1pySI4ttMGc_d0xeZjfL6W2yeJjfTSeLRKcghkSjtDzjWmnFuTVCGqPSlNWq1ihyLbSslM1kIQWirXKW61xqLGQNsQRWmI7Jxd435n_fmDCUK7fxMUsouQDGCgnAIgv2LO1dCN7YsvexrP8qgZW75co_y0UN32tC5K5fjf91_l_0Dcutb1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610097110</pqid></control><display><type>article</type><title>Approximation of a Mean Field Game Problem with Caputo Time-Fractional Derivative</title><source>SpringerNature Journals</source><creator>Lapin, A. ; Lapin, S. ; Zhang, S.</creator><creatorcontrib>Lapin, A. ; Lapin, S. ; Zhang, S.</creatorcontrib><description>A mean field game model in the interpretation of optimal control is investigated theoretically and numerically. This is the problem of minimizing a non-convex and non-coercive objective functional controlled by a coefficient in the Fokker–Planck equation with a time-fractional derivative. The existence of a weak solution to the problem posed is proved under an additional constraint on the smallness of the control function. The differential problem is approximated by the finite difference method, while the state equation is approximated by an efficiently implemented locally one-dimensional scheme. The existence of a solution to the finite-difference optimal control problem without additional constraints on the control function and discretization steps is proved. Stability estimates for the discrete state and adjoint state equations are given. The results of numerical experiments are presented for an applied problem. They demonstrate, among other things, the sensitivity of the solution to the order of the time-fractional derivative.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080221120234</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Approximation ; Coercivity ; Control stability ; Derivatives ; Equations of state ; Finite difference method ; Fokker-Planck equation ; Geometry ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Optimal control ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2021-12, Vol.42 (12), p.2876-2889</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ca7f242c8c822fe67ee8330d8dca65c6c7b8f47976aafb505c57ca97d1802aba3</citedby><cites>FETCH-LOGICAL-c316t-ca7f242c8c822fe67ee8330d8dca65c6c7b8f47976aafb505c57ca97d1802aba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080221120234$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080221120234$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lapin, A.</creatorcontrib><creatorcontrib>Lapin, S.</creatorcontrib><creatorcontrib>Zhang, S.</creatorcontrib><title>Approximation of a Mean Field Game Problem with Caputo Time-Fractional Derivative</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>A mean field game model in the interpretation of optimal control is investigated theoretically and numerically. This is the problem of minimizing a non-convex and non-coercive objective functional controlled by a coefficient in the Fokker–Planck equation with a time-fractional derivative. The existence of a weak solution to the problem posed is proved under an additional constraint on the smallness of the control function. The differential problem is approximated by the finite difference method, while the state equation is approximated by an efficiently implemented locally one-dimensional scheme. The existence of a solution to the finite-difference optimal control problem without additional constraints on the control function and discretization steps is proved. Stability estimates for the discrete state and adjoint state equations are given. The results of numerical experiments are presented for an applied problem. They demonstrate, among other things, the sensitivity of the solution to the order of the time-fractional derivative.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Coercivity</subject><subject>Control stability</subject><subject>Derivatives</subject><subject>Equations of state</subject><subject>Finite difference method</subject><subject>Fokker-Planck equation</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimal control</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UF1LwzAUDaLgnP4A3wI-V3PTNkkfx3RTmKg4n8ttmmhHu9Skm_rvzZjgg_h0L5wPzjmEnAO7BEizq2coipwpxjkAZzzNDsgIFKikKAQ_jH-Ekx1-TE5CWLFIFEKMyNOk7737bDocGremzlKk9wbXdNaYtqZz7Ax99K5qTUc_muGNTrHfDI4um84kM496J8OWXhvfbKPH1pySI4ttMGc_d0xeZjfL6W2yeJjfTSeLRKcghkSjtDzjWmnFuTVCGqPSlNWq1ihyLbSslM1kIQWirXKW61xqLGQNsQRWmI7Jxd435n_fmDCUK7fxMUsouQDGCgnAIgv2LO1dCN7YsvexrP8qgZW75co_y0UN32tC5K5fjf91_l_0Dcutb1E</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Lapin, A.</creator><creator>Lapin, S.</creator><creator>Zhang, S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Approximation of a Mean Field Game Problem with Caputo Time-Fractional Derivative</title><author>Lapin, A. ; Lapin, S. ; Zhang, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ca7f242c8c822fe67ee8330d8dca65c6c7b8f47976aafb505c57ca97d1802aba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Coercivity</topic><topic>Control stability</topic><topic>Derivatives</topic><topic>Equations of state</topic><topic>Finite difference method</topic><topic>Fokker-Planck equation</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimal control</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapin, A.</creatorcontrib><creatorcontrib>Lapin, S.</creatorcontrib><creatorcontrib>Zhang, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapin, A.</au><au>Lapin, S.</au><au>Zhang, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation of a Mean Field Game Problem with Caputo Time-Fractional Derivative</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>42</volume><issue>12</issue><spage>2876</spage><epage>2889</epage><pages>2876-2889</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>A mean field game model in the interpretation of optimal control is investigated theoretically and numerically. This is the problem of minimizing a non-convex and non-coercive objective functional controlled by a coefficient in the Fokker–Planck equation with a time-fractional derivative. The existence of a weak solution to the problem posed is proved under an additional constraint on the smallness of the control function. The differential problem is approximated by the finite difference method, while the state equation is approximated by an efficiently implemented locally one-dimensional scheme. The existence of a solution to the finite-difference optimal control problem without additional constraints on the control function and discretization steps is proved. Stability estimates for the discrete state and adjoint state equations are given. The results of numerical experiments are presented for an applied problem. They demonstrate, among other things, the sensitivity of the solution to the order of the time-fractional derivative.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080221120234</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2021-12, Vol.42 (12), p.2876-2889
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2610097110
source SpringerNature Journals
subjects Algebra
Analysis
Approximation
Coercivity
Control stability
Derivatives
Equations of state
Finite difference method
Fokker-Planck equation
Geometry
Mathematical analysis
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Optimal control
Probability Theory and Stochastic Processes
title Approximation of a Mean Field Game Problem with Caputo Time-Fractional Derivative
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20of%20a%20Mean%20Field%20Game%20Problem%20with%20Caputo%20Time-Fractional%20Derivative&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Lapin,%20A.&rft.date=2021-12-01&rft.volume=42&rft.issue=12&rft.spage=2876&rft.epage=2889&rft.pages=2876-2889&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080221120234&rft_dat=%3Cproquest_cross%3E2610097110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610097110&rft_id=info:pmid/&rfr_iscdi=true