Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain
The local dynamics of coupled identical nonlinear systems of second-order differential equations in a two-dimensional domain is studied. The main assumption is that the number of such equations is quite large. This makes it possible to move to a system with two continuous spatial variables. Critical...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2021-11, Vol.110 (5-6), p.709-717 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 717 |
---|---|
container_issue | 5-6 |
container_start_page | 709 |
container_title | Mathematical Notes |
container_volume | 110 |
creator | Kashchenko, S. A. |
description | The local dynamics of coupled identical nonlinear systems of second-order differential equations in a two-dimensional domain is studied. The main assumption is that the number of such equations is quite large. This makes it possible to move to a system with two continuous spatial variables. Critical cases in the problem of stability of the equilibrium state are highlighted. They all are of infinite dimension, i.e., the infinitely many roots of the characteristic equation for the linearized problem tend to the imaginary axis as the natural small parameter tends to zero. Special nonlinear partial differential equations are constructed whose nonlocal dynamics describes the behavior of the initial system in a neighborhood of the equilibrium state, which plays the role of a normal form. It should especially be noted that the constructed partial differential systems contain four spatial variables with boundary conditions for each of them. |
doi_str_mv | 10.1134/S0001434621110079 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610096874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610096874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-ecef0bf080783f86b285dd2e848c7d9899d4b4b47c96f681cbdb8c0d8de8ce163</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9Wk7SbTo7TrH1jw0PVc0iTVLG3TTVqk397sruBBJIch773fMDMI3VJyT2mSPpSEEJomKYsppYTw7Awt6IonEQBn52hxsKODf4muvN-FH2WULJAq5l50RnpsG1wOYjSibWdcGD86U0-jVjj_FKY_-rmdhjYo5exH3R2l9X4KjA2-6bHA2y8bFabTvQ-aaHFhuwBfo4tGtF7f_NQlen9ab_OXaPP2_Jo_biIZMxgjLXVD6oYA4ZA0wOoYVkrFGlKQXGWQZSqtw-MyYw0DKmtVgyQKlAapKUuW6O7Ud3B2P2k_Vjs7uTCHr-KwLckY8DSk6CklnfXe6aYanOmEmytKqsMxqz_HDEx8YnzI9h_a_Xb-H_oGRmp2oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610096874</pqid></control><display><type>article</type><title>Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain</title><source>SpringerNature Journals</source><creator>Kashchenko, S. A.</creator><creatorcontrib>Kashchenko, S. A.</creatorcontrib><description>The local dynamics of coupled identical nonlinear systems of second-order differential equations in a two-dimensional domain is studied. The main assumption is that the number of such equations is quite large. This makes it possible to move to a system with two continuous spatial variables. Critical cases in the problem of stability of the equilibrium state are highlighted. They all are of infinite dimension, i.e., the infinitely many roots of the characteristic equation for the linearized problem tend to the imaginary axis as the natural small parameter tends to zero. Special nonlinear partial differential equations are constructed whose nonlocal dynamics describes the behavior of the initial system in a neighborhood of the equilibrium state, which plays the role of a normal form. It should especially be noted that the constructed partial differential systems contain four spatial variables with boundary conditions for each of them.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434621110079</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Boundary conditions ; Canonical forms ; Continuity (mathematics) ; Domains ; Dynamical systems ; Eigenvalues ; Eigenvectors ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear differential equations ; Nonlinear systems ; Partial differential equations</subject><ispartof>Mathematical Notes, 2021-11, Vol.110 (5-6), p.709-717</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-ecef0bf080783f86b285dd2e848c7d9899d4b4b47c96f681cbdb8c0d8de8ce163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434621110079$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434621110079$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kashchenko, S. A.</creatorcontrib><title>Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>The local dynamics of coupled identical nonlinear systems of second-order differential equations in a two-dimensional domain is studied. The main assumption is that the number of such equations is quite large. This makes it possible to move to a system with two continuous spatial variables. Critical cases in the problem of stability of the equilibrium state are highlighted. They all are of infinite dimension, i.e., the infinitely many roots of the characteristic equation for the linearized problem tend to the imaginary axis as the natural small parameter tends to zero. Special nonlinear partial differential equations are constructed whose nonlocal dynamics describes the behavior of the initial system in a neighborhood of the equilibrium state, which plays the role of a normal form. It should especially be noted that the constructed partial differential systems contain four spatial variables with boundary conditions for each of them.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Boundary conditions</subject><subject>Canonical forms</subject><subject>Continuity (mathematics)</subject><subject>Domains</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear systems</subject><subject>Partial differential equations</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9Wk7SbTo7TrH1jw0PVc0iTVLG3TTVqk397sruBBJIch773fMDMI3VJyT2mSPpSEEJomKYsppYTw7Awt6IonEQBn52hxsKODf4muvN-FH2WULJAq5l50RnpsG1wOYjSibWdcGD86U0-jVjj_FKY_-rmdhjYo5exH3R2l9X4KjA2-6bHA2y8bFabTvQ-aaHFhuwBfo4tGtF7f_NQlen9ab_OXaPP2_Jo_biIZMxgjLXVD6oYA4ZA0wOoYVkrFGlKQXGWQZSqtw-MyYw0DKmtVgyQKlAapKUuW6O7Ud3B2P2k_Vjs7uTCHr-KwLckY8DSk6CklnfXe6aYanOmEmytKqsMxqz_HDEx8YnzI9h_a_Xb-H_oGRmp2oQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Kashchenko, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211101</creationdate><title>Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain</title><author>Kashchenko, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-ecef0bf080783f86b285dd2e848c7d9899d4b4b47c96f681cbdb8c0d8de8ce163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Boundary conditions</topic><topic>Canonical forms</topic><topic>Continuity (mathematics)</topic><topic>Domains</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear systems</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashchenko, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashchenko, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>110</volume><issue>5-6</issue><spage>709</spage><epage>717</epage><pages>709-717</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>The local dynamics of coupled identical nonlinear systems of second-order differential equations in a two-dimensional domain is studied. The main assumption is that the number of such equations is quite large. This makes it possible to move to a system with two continuous spatial variables. Critical cases in the problem of stability of the equilibrium state are highlighted. They all are of infinite dimension, i.e., the infinitely many roots of the characteristic equation for the linearized problem tend to the imaginary axis as the natural small parameter tends to zero. Special nonlinear partial differential equations are constructed whose nonlocal dynamics describes the behavior of the initial system in a neighborhood of the equilibrium state, which plays the role of a normal form. It should especially be noted that the constructed partial differential systems contain four spatial variables with boundary conditions for each of them.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434621110079</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4346 |
ispartof | Mathematical Notes, 2021-11, Vol.110 (5-6), p.709-717 |
issn | 0001-4346 1067-9073 1573-8876 |
language | eng |
recordid | cdi_proquest_journals_2610096874 |
source | SpringerNature Journals |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Boundary conditions Canonical forms Continuity (mathematics) Domains Dynamical systems Eigenvalues Eigenvectors Mathematical analysis Mathematics Mathematics and Statistics Nonlinear differential equations Nonlinear systems Partial differential equations |
title | Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Spatially%20Distributed%20Chains%20of%20Coupled%20Systems%20of%20Equations%20in%20a%20Two-Dimensional%20Domain&rft.jtitle=Mathematical%20Notes&rft.au=Kashchenko,%20S.%20A.&rft.date=2021-11-01&rft.volume=110&rft.issue=5-6&rft.spage=709&rft.epage=717&rft.pages=709-717&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434621110079&rft_dat=%3Cproquest_cross%3E2610096874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610096874&rft_id=info:pmid/&rfr_iscdi=true |