Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain

The local dynamics of coupled identical nonlinear systems of second-order differential equations in a two-dimensional domain is studied. The main assumption is that the number of such equations is quite large. This makes it possible to move to a system with two continuous spatial variables. Critical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2021-11, Vol.110 (5-6), p.709-717
1. Verfasser: Kashchenko, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 717
container_issue 5-6
container_start_page 709
container_title Mathematical Notes
container_volume 110
creator Kashchenko, S. A.
description The local dynamics of coupled identical nonlinear systems of second-order differential equations in a two-dimensional domain is studied. The main assumption is that the number of such equations is quite large. This makes it possible to move to a system with two continuous spatial variables. Critical cases in the problem of stability of the equilibrium state are highlighted. They all are of infinite dimension, i.e., the infinitely many roots of the characteristic equation for the linearized problem tend to the imaginary axis as the natural small parameter tends to zero. Special nonlinear partial differential equations are constructed whose nonlocal dynamics describes the behavior of the initial system in a neighborhood of the equilibrium state, which plays the role of a normal form. It should especially be noted that the constructed partial differential systems contain four spatial variables with boundary conditions for each of them.
doi_str_mv 10.1134/S0001434621110079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610096874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610096874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-ecef0bf080783f86b285dd2e848c7d9899d4b4b47c96f681cbdb8c0d8de8ce163</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9Wk7SbTo7TrH1jw0PVc0iTVLG3TTVqk397sruBBJIch773fMDMI3VJyT2mSPpSEEJomKYsppYTw7Awt6IonEQBn52hxsKODf4muvN-FH2WULJAq5l50RnpsG1wOYjSibWdcGD86U0-jVjj_FKY_-rmdhjYo5exH3R2l9X4KjA2-6bHA2y8bFabTvQ-aaHFhuwBfo4tGtF7f_NQlen9ab_OXaPP2_Jo_biIZMxgjLXVD6oYA4ZA0wOoYVkrFGlKQXGWQZSqtw-MyYw0DKmtVgyQKlAapKUuW6O7Ud3B2P2k_Vjs7uTCHr-KwLckY8DSk6CklnfXe6aYanOmEmytKqsMxqz_HDEx8YnzI9h_a_Xb-H_oGRmp2oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610096874</pqid></control><display><type>article</type><title>Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain</title><source>SpringerNature Journals</source><creator>Kashchenko, S. A.</creator><creatorcontrib>Kashchenko, S. A.</creatorcontrib><description>The local dynamics of coupled identical nonlinear systems of second-order differential equations in a two-dimensional domain is studied. The main assumption is that the number of such equations is quite large. This makes it possible to move to a system with two continuous spatial variables. Critical cases in the problem of stability of the equilibrium state are highlighted. They all are of infinite dimension, i.e., the infinitely many roots of the characteristic equation for the linearized problem tend to the imaginary axis as the natural small parameter tends to zero. Special nonlinear partial differential equations are constructed whose nonlocal dynamics describes the behavior of the initial system in a neighborhood of the equilibrium state, which plays the role of a normal form. It should especially be noted that the constructed partial differential systems contain four spatial variables with boundary conditions for each of them.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434621110079</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Boundary conditions ; Canonical forms ; Continuity (mathematics) ; Domains ; Dynamical systems ; Eigenvalues ; Eigenvectors ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear differential equations ; Nonlinear systems ; Partial differential equations</subject><ispartof>Mathematical Notes, 2021-11, Vol.110 (5-6), p.709-717</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-ecef0bf080783f86b285dd2e848c7d9899d4b4b47c96f681cbdb8c0d8de8ce163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434621110079$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434621110079$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kashchenko, S. A.</creatorcontrib><title>Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>The local dynamics of coupled identical nonlinear systems of second-order differential equations in a two-dimensional domain is studied. The main assumption is that the number of such equations is quite large. This makes it possible to move to a system with two continuous spatial variables. Critical cases in the problem of stability of the equilibrium state are highlighted. They all are of infinite dimension, i.e., the infinitely many roots of the characteristic equation for the linearized problem tend to the imaginary axis as the natural small parameter tends to zero. Special nonlinear partial differential equations are constructed whose nonlocal dynamics describes the behavior of the initial system in a neighborhood of the equilibrium state, which plays the role of a normal form. It should especially be noted that the constructed partial differential systems contain four spatial variables with boundary conditions for each of them.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Boundary conditions</subject><subject>Canonical forms</subject><subject>Continuity (mathematics)</subject><subject>Domains</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear systems</subject><subject>Partial differential equations</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9Wk7SbTo7TrH1jw0PVc0iTVLG3TTVqk397sruBBJIch773fMDMI3VJyT2mSPpSEEJomKYsppYTw7Awt6IonEQBn52hxsKODf4muvN-FH2WULJAq5l50RnpsG1wOYjSibWdcGD86U0-jVjj_FKY_-rmdhjYo5exH3R2l9X4KjA2-6bHA2y8bFabTvQ-aaHFhuwBfo4tGtF7f_NQlen9ab_OXaPP2_Jo_biIZMxgjLXVD6oYA4ZA0wOoYVkrFGlKQXGWQZSqtw-MyYw0DKmtVgyQKlAapKUuW6O7Ud3B2P2k_Vjs7uTCHr-KwLckY8DSk6CklnfXe6aYanOmEmytKqsMxqz_HDEx8YnzI9h_a_Xb-H_oGRmp2oQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Kashchenko, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211101</creationdate><title>Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain</title><author>Kashchenko, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-ecef0bf080783f86b285dd2e848c7d9899d4b4b47c96f681cbdb8c0d8de8ce163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Boundary conditions</topic><topic>Canonical forms</topic><topic>Continuity (mathematics)</topic><topic>Domains</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear systems</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashchenko, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashchenko, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>110</volume><issue>5-6</issue><spage>709</spage><epage>717</epage><pages>709-717</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>The local dynamics of coupled identical nonlinear systems of second-order differential equations in a two-dimensional domain is studied. The main assumption is that the number of such equations is quite large. This makes it possible to move to a system with two continuous spatial variables. Critical cases in the problem of stability of the equilibrium state are highlighted. They all are of infinite dimension, i.e., the infinitely many roots of the characteristic equation for the linearized problem tend to the imaginary axis as the natural small parameter tends to zero. Special nonlinear partial differential equations are constructed whose nonlocal dynamics describes the behavior of the initial system in a neighborhood of the equilibrium state, which plays the role of a normal form. It should especially be noted that the constructed partial differential systems contain four spatial variables with boundary conditions for each of them.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434621110079</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2021-11, Vol.110 (5-6), p.709-717
issn 0001-4346
1067-9073
1573-8876
language eng
recordid cdi_proquest_journals_2610096874
source SpringerNature Journals
subjects 14/34
639/766/189
639/766/530
639/766/747
Boundary conditions
Canonical forms
Continuity (mathematics)
Domains
Dynamical systems
Eigenvalues
Eigenvectors
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinear differential equations
Nonlinear systems
Partial differential equations
title Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Spatially%20Distributed%20Chains%20of%20Coupled%20Systems%20of%20Equations%20in%20a%20Two-Dimensional%20Domain&rft.jtitle=Mathematical%20Notes&rft.au=Kashchenko,%20S.%20A.&rft.date=2021-11-01&rft.volume=110&rft.issue=5-6&rft.spage=709&rft.epage=717&rft.pages=709-717&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434621110079&rft_dat=%3Cproquest_cross%3E2610096874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610096874&rft_id=info:pmid/&rfr_iscdi=true