Spatial Graph Convolutional Neural Network via Structured Subdomain Adaptation and Domain Adversarial Learning for Bearing Fault Diagnosis
Unsupervised domain adaptation (UDA) has shown remarkable results in bearing fault diagnosis under changing working conditions in recent years. However, most UDA methods do not consider the geometric structure of the data. Furthermore, the global domain adaptation technique is commonly applied, whic...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ghorvei, Mohammadreza Kavianpour, Mohammadreza Beheshti, Mohammad TH Ramezani, Amin |
description | Unsupervised domain adaptation (UDA) has shown remarkable results in bearing fault diagnosis under changing working conditions in recent years. However, most UDA methods do not consider the geometric structure of the data. Furthermore, the global domain adaptation technique is commonly applied, which ignores the relation between subdomains. This paper addresses mentioned challenges by presenting the novel deep subdomain adaptation graph convolution neural network (DSAGCN), which has two key characteristics: First, graph convolution neural network (GCNN) is employed to model the structure of data. Second, adversarial domain adaptation and local maximum mean discrepancy (LMMD) methods are applied concurrently to align the subdomain's distribution and reduce structure discrepancy between relevant subdomains and global domains. CWRU and Paderborn bearing datasets are used to validate the DSAGCN method's efficiency and superiority between comparison models. The experimental results demonstrate the significance of aligning structured subdomains along with domain adaptation methods to obtain an accurate data-driven model in unsupervised fault diagnosis. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2609876082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609876082</sourcerecordid><originalsourceid>FETCH-proquest_journals_26098760823</originalsourceid><addsrcrecordid>eNqNTstuwjAQtJAqgVr-YSXOSK4DIRx591BxCXe0ECcYgjes7fAPfDVJVe6c5qGZ0XRET0XR9zAZKdUVfefOUkoVT9R4HPXEI63QGyxhw1idYEG2pjJ4Q7bxtjrwH_g78QVqg5B6DkcfWGeQhkNGVzQWZhlWHtsSoM1g-XJrzQ65Xf_VyNbYAnJimDei5WsMpYelwcKSM-5LfORYOt3_x08xWK92i59hxXQL2vn9mQI3v9xexXKaTGKZqOi91BPoP1TO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609876082</pqid></control><display><type>article</type><title>Spatial Graph Convolutional Neural Network via Structured Subdomain Adaptation and Domain Adversarial Learning for Bearing Fault Diagnosis</title><source>Free E- Journals</source><creator>Ghorvei, Mohammadreza ; Kavianpour, Mohammadreza ; Beheshti, Mohammad TH ; Ramezani, Amin</creator><creatorcontrib>Ghorvei, Mohammadreza ; Kavianpour, Mohammadreza ; Beheshti, Mohammad TH ; Ramezani, Amin</creatorcontrib><description>Unsupervised domain adaptation (UDA) has shown remarkable results in bearing fault diagnosis under changing working conditions in recent years. However, most UDA methods do not consider the geometric structure of the data. Furthermore, the global domain adaptation technique is commonly applied, which ignores the relation between subdomains. This paper addresses mentioned challenges by presenting the novel deep subdomain adaptation graph convolution neural network (DSAGCN), which has two key characteristics: First, graph convolution neural network (GCNN) is employed to model the structure of data. Second, adversarial domain adaptation and local maximum mean discrepancy (LMMD) methods are applied concurrently to align the subdomain's distribution and reduce structure discrepancy between relevant subdomains and global domains. CWRU and Paderborn bearing datasets are used to validate the DSAGCN method's efficiency and superiority between comparison models. The experimental results demonstrate the significance of aligning structured subdomains along with domain adaptation methods to obtain an accurate data-driven model in unsupervised fault diagnosis.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Artificial neural networks ; Domains ; Fault diagnosis ; Neural networks</subject><ispartof>arXiv.org, 2021-12</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Ghorvei, Mohammadreza</creatorcontrib><creatorcontrib>Kavianpour, Mohammadreza</creatorcontrib><creatorcontrib>Beheshti, Mohammad TH</creatorcontrib><creatorcontrib>Ramezani, Amin</creatorcontrib><title>Spatial Graph Convolutional Neural Network via Structured Subdomain Adaptation and Domain Adversarial Learning for Bearing Fault Diagnosis</title><title>arXiv.org</title><description>Unsupervised domain adaptation (UDA) has shown remarkable results in bearing fault diagnosis under changing working conditions in recent years. However, most UDA methods do not consider the geometric structure of the data. Furthermore, the global domain adaptation technique is commonly applied, which ignores the relation between subdomains. This paper addresses mentioned challenges by presenting the novel deep subdomain adaptation graph convolution neural network (DSAGCN), which has two key characteristics: First, graph convolution neural network (GCNN) is employed to model the structure of data. Second, adversarial domain adaptation and local maximum mean discrepancy (LMMD) methods are applied concurrently to align the subdomain's distribution and reduce structure discrepancy between relevant subdomains and global domains. CWRU and Paderborn bearing datasets are used to validate the DSAGCN method's efficiency and superiority between comparison models. The experimental results demonstrate the significance of aligning structured subdomains along with domain adaptation methods to obtain an accurate data-driven model in unsupervised fault diagnosis.</description><subject>Adaptation</subject><subject>Artificial neural networks</subject><subject>Domains</subject><subject>Fault diagnosis</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNTstuwjAQtJAqgVr-YSXOSK4DIRx591BxCXe0ECcYgjes7fAPfDVJVe6c5qGZ0XRET0XR9zAZKdUVfefOUkoVT9R4HPXEI63QGyxhw1idYEG2pjJ4Q7bxtjrwH_g78QVqg5B6DkcfWGeQhkNGVzQWZhlWHtsSoM1g-XJrzQ65Xf_VyNbYAnJimDei5WsMpYelwcKSM-5LfORYOt3_x08xWK92i59hxXQL2vn9mQI3v9xexXKaTGKZqOi91BPoP1TO</recordid><startdate>20211211</startdate><enddate>20211211</enddate><creator>Ghorvei, Mohammadreza</creator><creator>Kavianpour, Mohammadreza</creator><creator>Beheshti, Mohammad TH</creator><creator>Ramezani, Amin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211211</creationdate><title>Spatial Graph Convolutional Neural Network via Structured Subdomain Adaptation and Domain Adversarial Learning for Bearing Fault Diagnosis</title><author>Ghorvei, Mohammadreza ; Kavianpour, Mohammadreza ; Beheshti, Mohammad TH ; Ramezani, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26098760823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Artificial neural networks</topic><topic>Domains</topic><topic>Fault diagnosis</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghorvei, Mohammadreza</creatorcontrib><creatorcontrib>Kavianpour, Mohammadreza</creatorcontrib><creatorcontrib>Beheshti, Mohammad TH</creatorcontrib><creatorcontrib>Ramezani, Amin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghorvei, Mohammadreza</au><au>Kavianpour, Mohammadreza</au><au>Beheshti, Mohammad TH</au><au>Ramezani, Amin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spatial Graph Convolutional Neural Network via Structured Subdomain Adaptation and Domain Adversarial Learning for Bearing Fault Diagnosis</atitle><jtitle>arXiv.org</jtitle><date>2021-12-11</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Unsupervised domain adaptation (UDA) has shown remarkable results in bearing fault diagnosis under changing working conditions in recent years. However, most UDA methods do not consider the geometric structure of the data. Furthermore, the global domain adaptation technique is commonly applied, which ignores the relation between subdomains. This paper addresses mentioned challenges by presenting the novel deep subdomain adaptation graph convolution neural network (DSAGCN), which has two key characteristics: First, graph convolution neural network (GCNN) is employed to model the structure of data. Second, adversarial domain adaptation and local maximum mean discrepancy (LMMD) methods are applied concurrently to align the subdomain's distribution and reduce structure discrepancy between relevant subdomains and global domains. CWRU and Paderborn bearing datasets are used to validate the DSAGCN method's efficiency and superiority between comparison models. The experimental results demonstrate the significance of aligning structured subdomains along with domain adaptation methods to obtain an accurate data-driven model in unsupervised fault diagnosis.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2609876082 |
source | Free E- Journals |
subjects | Adaptation Artificial neural networks Domains Fault diagnosis Neural networks |
title | Spatial Graph Convolutional Neural Network via Structured Subdomain Adaptation and Domain Adversarial Learning for Bearing Fault Diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spatial%20Graph%20Convolutional%20Neural%20Network%20via%20Structured%20Subdomain%20Adaptation%20and%20Domain%20Adversarial%20Learning%20for%20Bearing%20Fault%20Diagnosis&rft.jtitle=arXiv.org&rft.au=Ghorvei,%20Mohammadreza&rft.date=2021-12-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2609876082%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609876082&rft_id=info:pmid/&rfr_iscdi=true |