Sage: Leveraging ML to Diagnose Unpredictable Performance in Cloud Microservices
Cloud applications are increasingly shifting from large monolithic services, to complex graphs of loosely-coupled microservices. Despite their advantages, microservices also introduce cascading QoS violations in cloud applications, which are difficult to diagnose and correct. We present Sage, a ML-d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gan, Yu Liang, Mingyu Sundar Dev Lo, David Delimitrou, Christina |
description | Cloud applications are increasingly shifting from large monolithic services, to complex graphs of loosely-coupled microservices. Despite their advantages, microservices also introduce cascading QoS violations in cloud applications, which are difficult to diagnose and correct. We present Sage, a ML-driven root cause analysis system for interactive cloud microservices. Sage leverages unsupervised learning models to circumvent the overhead of trace labeling, determines the root cause of unpredictable performance online, and applies corrective actions to restore performance. On experiments on both dedicated local clusters and large GCE clusters we show that Sage achieves high root cause detection accuracy and predictable performance. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2609873710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609873710</sourcerecordid><originalsourceid>FETCH-proquest_journals_26098737103</originalsourceid><addsrcrecordid>eNqNyk8LgjAYgPERBEn5HV7oLMwt_9TVig4KQnWWpa9jYptt6ufPQx-g03N4fiviMc7DID0wtiG-cx2llMUJiyLukfIuJJ4gxxmtkEpLKHIYDZyVkNo4hKceLDaqHsWrRyjRtsa-ha4RlIasN1MDhartQu2sanQ7sm5F79D_dUv218sjuwWDNZ8J3Vh1ZrJ6WRWL6TFNeBJS_p_6Ag7KPo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609873710</pqid></control><display><type>article</type><title>Sage: Leveraging ML to Diagnose Unpredictable Performance in Cloud Microservices</title><source>Free E- Journals</source><creator>Gan, Yu ; Liang, Mingyu ; Sundar Dev ; Lo, David ; Delimitrou, Christina</creator><creatorcontrib>Gan, Yu ; Liang, Mingyu ; Sundar Dev ; Lo, David ; Delimitrou, Christina</creatorcontrib><description>Cloud applications are increasingly shifting from large monolithic services, to complex graphs of loosely-coupled microservices. Despite their advantages, microservices also introduce cascading QoS violations in cloud applications, which are difficult to diagnose and correct. We present Sage, a ML-driven root cause analysis system for interactive cloud microservices. Sage leverages unsupervised learning models to circumvent the overhead of trace labeling, determines the root cause of unpredictable performance online, and applies corrective actions to restore performance. On experiments on both dedicated local clusters and large GCE clusters we show that Sage achieves high root cause detection accuracy and predictable performance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cloud computing ; Clusters ; Interactive systems ; Root cause analysis</subject><ispartof>arXiv.org, 2021-12</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gan, Yu</creatorcontrib><creatorcontrib>Liang, Mingyu</creatorcontrib><creatorcontrib>Sundar Dev</creatorcontrib><creatorcontrib>Lo, David</creatorcontrib><creatorcontrib>Delimitrou, Christina</creatorcontrib><title>Sage: Leveraging ML to Diagnose Unpredictable Performance in Cloud Microservices</title><title>arXiv.org</title><description>Cloud applications are increasingly shifting from large monolithic services, to complex graphs of loosely-coupled microservices. Despite their advantages, microservices also introduce cascading QoS violations in cloud applications, which are difficult to diagnose and correct. We present Sage, a ML-driven root cause analysis system for interactive cloud microservices. Sage leverages unsupervised learning models to circumvent the overhead of trace labeling, determines the root cause of unpredictable performance online, and applies corrective actions to restore performance. On experiments on both dedicated local clusters and large GCE clusters we show that Sage achieves high root cause detection accuracy and predictable performance.</description><subject>Cloud computing</subject><subject>Clusters</subject><subject>Interactive systems</subject><subject>Root cause analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk8LgjAYgPERBEn5HV7oLMwt_9TVig4KQnWWpa9jYptt6ufPQx-g03N4fiviMc7DID0wtiG-cx2llMUJiyLukfIuJJ4gxxmtkEpLKHIYDZyVkNo4hKceLDaqHsWrRyjRtsa-ha4RlIasN1MDhartQu2sanQ7sm5F79D_dUv218sjuwWDNZ8J3Vh1ZrJ6WRWL6TFNeBJS_p_6Ag7KPo8</recordid><startdate>20211212</startdate><enddate>20211212</enddate><creator>Gan, Yu</creator><creator>Liang, Mingyu</creator><creator>Sundar Dev</creator><creator>Lo, David</creator><creator>Delimitrou, Christina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211212</creationdate><title>Sage: Leveraging ML to Diagnose Unpredictable Performance in Cloud Microservices</title><author>Gan, Yu ; Liang, Mingyu ; Sundar Dev ; Lo, David ; Delimitrou, Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26098737103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cloud computing</topic><topic>Clusters</topic><topic>Interactive systems</topic><topic>Root cause analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Gan, Yu</creatorcontrib><creatorcontrib>Liang, Mingyu</creatorcontrib><creatorcontrib>Sundar Dev</creatorcontrib><creatorcontrib>Lo, David</creatorcontrib><creatorcontrib>Delimitrou, Christina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Yu</au><au>Liang, Mingyu</au><au>Sundar Dev</au><au>Lo, David</au><au>Delimitrou, Christina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sage: Leveraging ML to Diagnose Unpredictable Performance in Cloud Microservices</atitle><jtitle>arXiv.org</jtitle><date>2021-12-12</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Cloud applications are increasingly shifting from large monolithic services, to complex graphs of loosely-coupled microservices. Despite their advantages, microservices also introduce cascading QoS violations in cloud applications, which are difficult to diagnose and correct. We present Sage, a ML-driven root cause analysis system for interactive cloud microservices. Sage leverages unsupervised learning models to circumvent the overhead of trace labeling, determines the root cause of unpredictable performance online, and applies corrective actions to restore performance. On experiments on both dedicated local clusters and large GCE clusters we show that Sage achieves high root cause detection accuracy and predictable performance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2609873710 |
source | Free E- Journals |
subjects | Cloud computing Clusters Interactive systems Root cause analysis |
title | Sage: Leveraging ML to Diagnose Unpredictable Performance in Cloud Microservices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sage:%20Leveraging%20ML%20to%20Diagnose%20Unpredictable%20Performance%20in%20Cloud%20Microservices&rft.jtitle=arXiv.org&rft.au=Gan,%20Yu&rft.date=2021-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2609873710%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609873710&rft_id=info:pmid/&rfr_iscdi=true |