Pursuit and Evasion Games for an Infinite System of Differential Equations
In this paper we study a linear pursuit differential game described by an infinite system of first-order differential equations in Hilbert space. The control functions of players are subject to geometric constraints. The pursuer attempts to bring the state of system from a given initial state to the...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2022-01, Vol.45 (1), p.69-81 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | Bulletin of the Malaysian Mathematical Sciences Society |
container_volume | 45 |
creator | Ibragimov, Gafurjan Ferrara, Massimiliano Alias, Idham Arif Salimi, Mehdi Ismail, Nurzeehan |
description | In this paper we study a linear pursuit differential game described by an infinite system of first-order differential equations in Hilbert space. The control functions of players are subject to geometric constraints. The pursuer attempts to bring the state of system from a given initial state to the origin for a finite time and the evader’s purpose is opposite. We obtain a formula for the guaranteed pursuit time and construct a strategy for pursuer. Also, we obtain a formula for the guaranteed evasion time. |
doi_str_mv | 10.1007/s40840-021-01176-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609715103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609715103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-92fbf1f1f5ff5f4311975c4258561912e040827cee2ba89f093b551dbd9fdb83</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOHRfwKeAz9G7tEmbR5lzTgYK7j2kbSIdW7slqWzf3mgF37w7ODj-vzvuT8gNwh0CFPchhzIHBhwZIBaSHc_IhGMJLOcgz8kEkEsmCxCXZBrCBlIIySXHCXl5G3wY2khN19D5pwlt39GF2dlAXe_TlC4713ZttPT9FKLd0d7Rx9Y5620XW7Ol88NgYqLCNblwZhvs9LdfkfXTfD17ZqvXxXL2sGJ1VorIFHeVw5TCpcozRFWIOueiFBIVcgvpHV7U1vLKlMqByiohsKka5ZqqzK7I7bh27_vDYEPUm37wXbqouQRVoEDIkoqPqtr3IXjr9N63O-NPGkF_u6ZH13RyTf-4po8JykYoJHH3Yf3f6n-oLyDoby0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609715103</pqid></control><display><type>article</type><title>Pursuit and Evasion Games for an Infinite System of Differential Equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Ibragimov, Gafurjan ; Ferrara, Massimiliano ; Alias, Idham Arif ; Salimi, Mehdi ; Ismail, Nurzeehan</creator><creatorcontrib>Ibragimov, Gafurjan ; Ferrara, Massimiliano ; Alias, Idham Arif ; Salimi, Mehdi ; Ismail, Nurzeehan</creatorcontrib><description>In this paper we study a linear pursuit differential game described by an infinite system of first-order differential equations in Hilbert space. The control functions of players are subject to geometric constraints. The pursuer attempts to bring the state of system from a given initial state to the origin for a finite time and the evader’s purpose is opposite. We obtain a formula for the guaranteed pursuit time and construct a strategy for pursuer. Also, we obtain a formula for the guaranteed evasion time.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-021-01176-x</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Applications of Mathematics ; Differential equations ; Differential games ; Formulas (mathematics) ; Geometric constraints ; Hilbert space ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Pursuit-evasion games</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2022-01, Vol.45 (1), p.69-81</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2021</rights><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-92fbf1f1f5ff5f4311975c4258561912e040827cee2ba89f093b551dbd9fdb83</citedby><cites>FETCH-LOGICAL-c385t-92fbf1f1f5ff5f4311975c4258561912e040827cee2ba89f093b551dbd9fdb83</cites><orcidid>0000-0002-6537-6346 ; 0000-0002-9586-8878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-021-01176-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-021-01176-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ibragimov, Gafurjan</creatorcontrib><creatorcontrib>Ferrara, Massimiliano</creatorcontrib><creatorcontrib>Alias, Idham Arif</creatorcontrib><creatorcontrib>Salimi, Mehdi</creatorcontrib><creatorcontrib>Ismail, Nurzeehan</creatorcontrib><title>Pursuit and Evasion Games for an Infinite System of Differential Equations</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>In this paper we study a linear pursuit differential game described by an infinite system of first-order differential equations in Hilbert space. The control functions of players are subject to geometric constraints. The pursuer attempts to bring the state of system from a given initial state to the origin for a finite time and the evader’s purpose is opposite. We obtain a formula for the guaranteed pursuit time and construct a strategy for pursuer. Also, we obtain a formula for the guaranteed evasion time.</description><subject>Applications of Mathematics</subject><subject>Differential equations</subject><subject>Differential games</subject><subject>Formulas (mathematics)</subject><subject>Geometric constraints</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Pursuit-evasion games</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQx4MoOHRfwKeAz9G7tEmbR5lzTgYK7j2kbSIdW7slqWzf3mgF37w7ODj-vzvuT8gNwh0CFPchhzIHBhwZIBaSHc_IhGMJLOcgz8kEkEsmCxCXZBrCBlIIySXHCXl5G3wY2khN19D5pwlt39GF2dlAXe_TlC4713ZttPT9FKLd0d7Rx9Y5620XW7Ol88NgYqLCNblwZhvs9LdfkfXTfD17ZqvXxXL2sGJ1VorIFHeVw5TCpcozRFWIOueiFBIVcgvpHV7U1vLKlMqByiohsKka5ZqqzK7I7bh27_vDYEPUm37wXbqouQRVoEDIkoqPqtr3IXjr9N63O-NPGkF_u6ZH13RyTf-4po8JykYoJHH3Yf3f6n-oLyDoby0</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ibragimov, Gafurjan</creator><creator>Ferrara, Massimiliano</creator><creator>Alias, Idham Arif</creator><creator>Salimi, Mehdi</creator><creator>Ismail, Nurzeehan</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6537-6346</orcidid><orcidid>https://orcid.org/0000-0002-9586-8878</orcidid></search><sort><creationdate>20220101</creationdate><title>Pursuit and Evasion Games for an Infinite System of Differential Equations</title><author>Ibragimov, Gafurjan ; Ferrara, Massimiliano ; Alias, Idham Arif ; Salimi, Mehdi ; Ismail, Nurzeehan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-92fbf1f1f5ff5f4311975c4258561912e040827cee2ba89f093b551dbd9fdb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Differential equations</topic><topic>Differential games</topic><topic>Formulas (mathematics)</topic><topic>Geometric constraints</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Pursuit-evasion games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibragimov, Gafurjan</creatorcontrib><creatorcontrib>Ferrara, Massimiliano</creatorcontrib><creatorcontrib>Alias, Idham Arif</creatorcontrib><creatorcontrib>Salimi, Mehdi</creatorcontrib><creatorcontrib>Ismail, Nurzeehan</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibragimov, Gafurjan</au><au>Ferrara, Massimiliano</au><au>Alias, Idham Arif</au><au>Salimi, Mehdi</au><au>Ismail, Nurzeehan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pursuit and Evasion Games for an Infinite System of Differential Equations</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>45</volume><issue>1</issue><spage>69</spage><epage>81</epage><pages>69-81</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>In this paper we study a linear pursuit differential game described by an infinite system of first-order differential equations in Hilbert space. The control functions of players are subject to geometric constraints. The pursuer attempts to bring the state of system from a given initial state to the origin for a finite time and the evader’s purpose is opposite. We obtain a formula for the guaranteed pursuit time and construct a strategy for pursuer. Also, we obtain a formula for the guaranteed evasion time.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-021-01176-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6537-6346</orcidid><orcidid>https://orcid.org/0000-0002-9586-8878</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0126-6705 |
ispartof | Bulletin of the Malaysian Mathematical Sciences Society, 2022-01, Vol.45 (1), p.69-81 |
issn | 0126-6705 2180-4206 |
language | eng |
recordid | cdi_proquest_journals_2609715103 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Differential equations Differential games Formulas (mathematics) Geometric constraints Hilbert space Mathematical analysis Mathematics Mathematics and Statistics Pursuit-evasion games |
title | Pursuit and Evasion Games for an Infinite System of Differential Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pursuit%20and%20Evasion%20Games%20for%20an%20Infinite%20System%20of%20Differential%20Equations&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Ibragimov,%20Gafurjan&rft.date=2022-01-01&rft.volume=45&rft.issue=1&rft.spage=69&rft.epage=81&rft.pages=69-81&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-021-01176-x&rft_dat=%3Cproquest_cross%3E2609715103%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609715103&rft_id=info:pmid/&rfr_iscdi=true |