The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt
Palaeomagnetic studies of Apollo samples indicate that the Moon generated a magnetic field for at least 2 billion years 1 , 2 . However, the geometry of the lunar magnetic field is still largely unknown because the original orientations of essentially all Apollo samples have not been well constraine...
Gespeichert in:
Veröffentlicht in: | Nature astronomy 2021-12, Vol.5 (12), p.1216-1223 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1223 |
---|---|
container_issue | 12 |
container_start_page | 1216 |
container_title | Nature astronomy |
container_volume | 5 |
creator | Nichols, Claire I. O. Weiss, Benjamin P. Getzin, Brenna L. Schmitt, Harrison H. Béguin, Annemarieke Rae, Auriol S. P. Shah, Jay |
description | Palaeomagnetic studies of Apollo samples indicate that the Moon generated a magnetic field for at least 2 billion years
1
,
2
. However, the geometry of the lunar magnetic field is still largely unknown because the original orientations of essentially all Apollo samples have not been well constrained. Determining the direction of the lunar magnetic field over time could elucidate the mechanism by which the lunar dynamo was powered and whether the Moon experienced true polar wander. Here we present measurements of the lunar magnetic field 3.7 billion years ago as recorded by Apollo 17 mare basalts 75035 and 75055. We find that 75035 and 75055 record a mean palaeointensity of ~50 μT. Furthermore, we could infer from the magnetization direction of 75055 and the layering of its parent boulder that the inclination of the magnetic field at the time was 34 ± 10°. Our recovered inclination is consistent with, but does not require, a selenocentric axial dipole (SAD) field geometry: a dipole in the centre of the Moon and aligned along the spin axis. Additionally, although true polar wander is not required by our data, true polar wander paths inferred from some independent studies of lunar hydrogen deposits and crustal magnetic anomalies
4
–
6
are consistent with our measured paleoinclination.
Basalt samples from the Moon gathered during the Apollo 17 mission hold information on the lunar magnetic field as it was 3.7 billion years ago. Its mean intensity was ~50 μT and its inclination 34 ± 10°. Such results suggest that the lunar dynamo was active at the time and was axially aligned and dipolar. |
doi_str_mv | 10.1038/s41550-021-01469-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609525212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609525212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e378b502edeb0817c689be4c206ec18a4ed3046c794e0d58e07b83de0e3e43f43</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwFPFcnH03b47L4BQuCrOeQptO1SzapSXvYf2-1gp48zcA87zvwEHLN4JaBKO-SZHkOGXCWAZOqyk5nZMFFVWRCKHX-Z78kq5QOAMCrnAnGFuR19460N85g6Lx1nTdDFzwNLR2mg_G2Qz9QN3oT6dHsPQ6dpW2HrqFtDMeJoOs-OBcoK2htknHDFblojUu4-plL8vZwv9s8ZduXx-fNeptZocSQoSjKOgeODdZQssKqsqpRWg4KLSuNxEaAVLaoJEKTlwhFXYoGAQVK0UqxJDdzbx_Dx4hp0IcwRj-91FxBlfOcMz5RfKZsDClFbHUfu6OJJ81Af-nTsz496dPf-vRpCok5lCbY7zH-Vv-T-gTR-XJt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609525212</pqid></control><display><type>article</type><title>The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt</title><source>Springer Nature - Complete Springer Journals</source><creator>Nichols, Claire I. O. ; Weiss, Benjamin P. ; Getzin, Brenna L. ; Schmitt, Harrison H. ; Béguin, Annemarieke ; Rae, Auriol S. P. ; Shah, Jay</creator><creatorcontrib>Nichols, Claire I. O. ; Weiss, Benjamin P. ; Getzin, Brenna L. ; Schmitt, Harrison H. ; Béguin, Annemarieke ; Rae, Auriol S. P. ; Shah, Jay</creatorcontrib><description>Palaeomagnetic studies of Apollo samples indicate that the Moon generated a magnetic field for at least 2 billion years
1
,
2
. However, the geometry of the lunar magnetic field is still largely unknown because the original orientations of essentially all Apollo samples have not been well constrained. Determining the direction of the lunar magnetic field over time could elucidate the mechanism by which the lunar dynamo was powered and whether the Moon experienced true polar wander. Here we present measurements of the lunar magnetic field 3.7 billion years ago as recorded by Apollo 17 mare basalts 75035 and 75055. We find that 75035 and 75055 record a mean palaeointensity of ~50 μT. Furthermore, we could infer from the magnetization direction of 75055 and the layering of its parent boulder that the inclination of the magnetic field at the time was 34 ± 10°. Our recovered inclination is consistent with, but does not require, a selenocentric axial dipole (SAD) field geometry: a dipole in the centre of the Moon and aligned along the spin axis. Additionally, although true polar wander is not required by our data, true polar wander paths inferred from some independent studies of lunar hydrogen deposits and crustal magnetic anomalies
4
–
6
are consistent with our measured paleoinclination.
Basalt samples from the Moon gathered during the Apollo 17 mission hold information on the lunar magnetic field as it was 3.7 billion years ago. Its mean intensity was ~50 μT and its inclination 34 ± 10°. Such results suggest that the lunar dynamo was active at the time and was axially aligned and dipolar.</description><identifier>ISSN: 2397-3366</identifier><identifier>EISSN: 2397-3366</identifier><identifier>DOI: 10.1038/s41550-021-01469-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151/214 ; 704/445/123 ; Astronomy ; Astrophysics and Cosmology ; Basalt ; Letter ; Magnetic fields ; Magnetism ; Moon ; Paleomagnetism ; Physics ; Physics and Astronomy ; Polar wandering</subject><ispartof>Nature astronomy, 2021-12, Vol.5 (12), p.1216-1223</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e378b502edeb0817c689be4c206ec18a4ed3046c794e0d58e07b83de0e3e43f43</citedby><cites>FETCH-LOGICAL-c363t-e378b502edeb0817c689be4c206ec18a4ed3046c794e0d58e07b83de0e3e43f43</cites><orcidid>0000-0003-2947-5694 ; 0000-0003-3113-3415 ; 0000-0002-6196-4247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41550-021-01469-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41550-021-01469-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Nichols, Claire I. O.</creatorcontrib><creatorcontrib>Weiss, Benjamin P.</creatorcontrib><creatorcontrib>Getzin, Brenna L.</creatorcontrib><creatorcontrib>Schmitt, Harrison H.</creatorcontrib><creatorcontrib>Béguin, Annemarieke</creatorcontrib><creatorcontrib>Rae, Auriol S. P.</creatorcontrib><creatorcontrib>Shah, Jay</creatorcontrib><title>The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt</title><title>Nature astronomy</title><addtitle>Nat Astron</addtitle><description>Palaeomagnetic studies of Apollo samples indicate that the Moon generated a magnetic field for at least 2 billion years
1
,
2
. However, the geometry of the lunar magnetic field is still largely unknown because the original orientations of essentially all Apollo samples have not been well constrained. Determining the direction of the lunar magnetic field over time could elucidate the mechanism by which the lunar dynamo was powered and whether the Moon experienced true polar wander. Here we present measurements of the lunar magnetic field 3.7 billion years ago as recorded by Apollo 17 mare basalts 75035 and 75055. We find that 75035 and 75055 record a mean palaeointensity of ~50 μT. Furthermore, we could infer from the magnetization direction of 75055 and the layering of its parent boulder that the inclination of the magnetic field at the time was 34 ± 10°. Our recovered inclination is consistent with, but does not require, a selenocentric axial dipole (SAD) field geometry: a dipole in the centre of the Moon and aligned along the spin axis. Additionally, although true polar wander is not required by our data, true polar wander paths inferred from some independent studies of lunar hydrogen deposits and crustal magnetic anomalies
4
–
6
are consistent with our measured paleoinclination.
Basalt samples from the Moon gathered during the Apollo 17 mission hold information on the lunar magnetic field as it was 3.7 billion years ago. Its mean intensity was ~50 μT and its inclination 34 ± 10°. Such results suggest that the lunar dynamo was active at the time and was axially aligned and dipolar.</description><subject>704/2151/214</subject><subject>704/445/123</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Basalt</subject><subject>Letter</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Moon</subject><subject>Paleomagnetism</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polar wandering</subject><issn>2397-3366</issn><issn>2397-3366</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouKz7BzwFPFcnH03b47L4BQuCrOeQptO1SzapSXvYf2-1gp48zcA87zvwEHLN4JaBKO-SZHkOGXCWAZOqyk5nZMFFVWRCKHX-Z78kq5QOAMCrnAnGFuR19460N85g6Lx1nTdDFzwNLR2mg_G2Qz9QN3oT6dHsPQ6dpW2HrqFtDMeJoOs-OBcoK2htknHDFblojUu4-plL8vZwv9s8ZduXx-fNeptZocSQoSjKOgeODdZQssKqsqpRWg4KLSuNxEaAVLaoJEKTlwhFXYoGAQVK0UqxJDdzbx_Dx4hp0IcwRj-91FxBlfOcMz5RfKZsDClFbHUfu6OJJ81Af-nTsz496dPf-vRpCok5lCbY7zH-Vv-T-gTR-XJt</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Nichols, Claire I. O.</creator><creator>Weiss, Benjamin P.</creator><creator>Getzin, Brenna L.</creator><creator>Schmitt, Harrison H.</creator><creator>Béguin, Annemarieke</creator><creator>Rae, Auriol S. P.</creator><creator>Shah, Jay</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2947-5694</orcidid><orcidid>https://orcid.org/0000-0003-3113-3415</orcidid><orcidid>https://orcid.org/0000-0002-6196-4247</orcidid></search><sort><creationdate>20211201</creationdate><title>The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt</title><author>Nichols, Claire I. O. ; Weiss, Benjamin P. ; Getzin, Brenna L. ; Schmitt, Harrison H. ; Béguin, Annemarieke ; Rae, Auriol S. P. ; Shah, Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e378b502edeb0817c689be4c206ec18a4ed3046c794e0d58e07b83de0e3e43f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/2151/214</topic><topic>704/445/123</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Basalt</topic><topic>Letter</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Moon</topic><topic>Paleomagnetism</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polar wandering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Claire I. O.</creatorcontrib><creatorcontrib>Weiss, Benjamin P.</creatorcontrib><creatorcontrib>Getzin, Brenna L.</creatorcontrib><creatorcontrib>Schmitt, Harrison H.</creatorcontrib><creatorcontrib>Béguin, Annemarieke</creatorcontrib><creatorcontrib>Rae, Auriol S. P.</creatorcontrib><creatorcontrib>Shah, Jay</creatorcontrib><collection>CrossRef</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Claire I. O.</au><au>Weiss, Benjamin P.</au><au>Getzin, Brenna L.</au><au>Schmitt, Harrison H.</au><au>Béguin, Annemarieke</au><au>Rae, Auriol S. P.</au><au>Shah, Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt</atitle><jtitle>Nature astronomy</jtitle><stitle>Nat Astron</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>5</volume><issue>12</issue><spage>1216</spage><epage>1223</epage><pages>1216-1223</pages><issn>2397-3366</issn><eissn>2397-3366</eissn><abstract>Palaeomagnetic studies of Apollo samples indicate that the Moon generated a magnetic field for at least 2 billion years
1
,
2
. However, the geometry of the lunar magnetic field is still largely unknown because the original orientations of essentially all Apollo samples have not been well constrained. Determining the direction of the lunar magnetic field over time could elucidate the mechanism by which the lunar dynamo was powered and whether the Moon experienced true polar wander. Here we present measurements of the lunar magnetic field 3.7 billion years ago as recorded by Apollo 17 mare basalts 75035 and 75055. We find that 75035 and 75055 record a mean palaeointensity of ~50 μT. Furthermore, we could infer from the magnetization direction of 75055 and the layering of its parent boulder that the inclination of the magnetic field at the time was 34 ± 10°. Our recovered inclination is consistent with, but does not require, a selenocentric axial dipole (SAD) field geometry: a dipole in the centre of the Moon and aligned along the spin axis. Additionally, although true polar wander is not required by our data, true polar wander paths inferred from some independent studies of lunar hydrogen deposits and crustal magnetic anomalies
4
–
6
are consistent with our measured paleoinclination.
Basalt samples from the Moon gathered during the Apollo 17 mission hold information on the lunar magnetic field as it was 3.7 billion years ago. Its mean intensity was ~50 μT and its inclination 34 ± 10°. Such results suggest that the lunar dynamo was active at the time and was axially aligned and dipolar.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41550-021-01469-y</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2947-5694</orcidid><orcidid>https://orcid.org/0000-0003-3113-3415</orcidid><orcidid>https://orcid.org/0000-0002-6196-4247</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-3366 |
ispartof | Nature astronomy, 2021-12, Vol.5 (12), p.1216-1223 |
issn | 2397-3366 2397-3366 |
language | eng |
recordid | cdi_proquest_journals_2609525212 |
source | Springer Nature - Complete Springer Journals |
subjects | 704/2151/214 704/445/123 Astronomy Astrophysics and Cosmology Basalt Letter Magnetic fields Magnetism Moon Paleomagnetism Physics Physics and Astronomy Polar wandering |
title | The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20palaeoinclination%20of%20the%20ancient%20lunar%20magnetic%20field%20from%20an%20Apollo%2017%20basalt&rft.jtitle=Nature%20astronomy&rft.au=Nichols,%20Claire%20I.%20O.&rft.date=2021-12-01&rft.volume=5&rft.issue=12&rft.spage=1216&rft.epage=1223&rft.pages=1216-1223&rft.issn=2397-3366&rft.eissn=2397-3366&rft_id=info:doi/10.1038/s41550-021-01469-y&rft_dat=%3Cproquest_cross%3E2609525212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609525212&rft_id=info:pmid/&rfr_iscdi=true |