The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt

Palaeomagnetic studies of Apollo samples indicate that the Moon generated a magnetic field for at least 2 billion years 1 , 2 . However, the geometry of the lunar magnetic field is still largely unknown because the original orientations of essentially all Apollo samples have not been well constraine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature astronomy 2021-12, Vol.5 (12), p.1216-1223
Hauptverfasser: Nichols, Claire I. O., Weiss, Benjamin P., Getzin, Brenna L., Schmitt, Harrison H., Béguin, Annemarieke, Rae, Auriol S. P., Shah, Jay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1223
container_issue 12
container_start_page 1216
container_title Nature astronomy
container_volume 5
creator Nichols, Claire I. O.
Weiss, Benjamin P.
Getzin, Brenna L.
Schmitt, Harrison H.
Béguin, Annemarieke
Rae, Auriol S. P.
Shah, Jay
description Palaeomagnetic studies of Apollo samples indicate that the Moon generated a magnetic field for at least 2 billion years 1 , 2 . However, the geometry of the lunar magnetic field is still largely unknown because the original orientations of essentially all Apollo samples have not been well constrained. Determining the direction of the lunar magnetic field over time could elucidate the mechanism by which the lunar dynamo was powered and whether the Moon experienced true polar wander. Here we present measurements of the lunar magnetic field 3.7 billion years ago as recorded by Apollo 17 mare basalts 75035 and 75055. We find that 75035 and 75055 record a mean palaeointensity of ~50 μT. Furthermore, we could infer from the magnetization direction of 75055 and the layering of its parent boulder that the inclination of the magnetic field at the time was 34 ± 10°. Our recovered inclination is consistent with, but does not require, a selenocentric axial dipole (SAD) field geometry: a dipole in the centre of the Moon and aligned along the spin axis. Additionally, although true polar wander is not required by our data, true polar wander paths inferred from some independent studies of lunar hydrogen deposits and crustal magnetic anomalies 4 – 6 are consistent with our measured paleoinclination. Basalt samples from the Moon gathered during the Apollo 17 mission hold information on the lunar magnetic field as it was 3.7 billion years ago. Its mean intensity was ~50 μT and its inclination 34 ± 10°. Such results suggest that the lunar dynamo was active at the time and was axially aligned and dipolar.
doi_str_mv 10.1038/s41550-021-01469-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609525212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609525212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e378b502edeb0817c689be4c206ec18a4ed3046c794e0d58e07b83de0e3e43f43</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwFPFcnH03b47L4BQuCrOeQptO1SzapSXvYf2-1gp48zcA87zvwEHLN4JaBKO-SZHkOGXCWAZOqyk5nZMFFVWRCKHX-Z78kq5QOAMCrnAnGFuR19460N85g6Lx1nTdDFzwNLR2mg_G2Qz9QN3oT6dHsPQ6dpW2HrqFtDMeJoOs-OBcoK2htknHDFblojUu4-plL8vZwv9s8ZduXx-fNeptZocSQoSjKOgeODdZQssKqsqpRWg4KLSuNxEaAVLaoJEKTlwhFXYoGAQVK0UqxJDdzbx_Dx4hp0IcwRj-91FxBlfOcMz5RfKZsDClFbHUfu6OJJ81Af-nTsz496dPf-vRpCok5lCbY7zH-Vv-T-gTR-XJt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609525212</pqid></control><display><type>article</type><title>The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt</title><source>Springer Nature - Complete Springer Journals</source><creator>Nichols, Claire I. O. ; Weiss, Benjamin P. ; Getzin, Brenna L. ; Schmitt, Harrison H. ; Béguin, Annemarieke ; Rae, Auriol S. P. ; Shah, Jay</creator><creatorcontrib>Nichols, Claire I. O. ; Weiss, Benjamin P. ; Getzin, Brenna L. ; Schmitt, Harrison H. ; Béguin, Annemarieke ; Rae, Auriol S. P. ; Shah, Jay</creatorcontrib><description>Palaeomagnetic studies of Apollo samples indicate that the Moon generated a magnetic field for at least 2 billion years 1 , 2 . However, the geometry of the lunar magnetic field is still largely unknown because the original orientations of essentially all Apollo samples have not been well constrained. Determining the direction of the lunar magnetic field over time could elucidate the mechanism by which the lunar dynamo was powered and whether the Moon experienced true polar wander. Here we present measurements of the lunar magnetic field 3.7 billion years ago as recorded by Apollo 17 mare basalts 75035 and 75055. We find that 75035 and 75055 record a mean palaeointensity of ~50 μT. Furthermore, we could infer from the magnetization direction of 75055 and the layering of its parent boulder that the inclination of the magnetic field at the time was 34 ± 10°. Our recovered inclination is consistent with, but does not require, a selenocentric axial dipole (SAD) field geometry: a dipole in the centre of the Moon and aligned along the spin axis. Additionally, although true polar wander is not required by our data, true polar wander paths inferred from some independent studies of lunar hydrogen deposits and crustal magnetic anomalies 4 – 6 are consistent with our measured paleoinclination. Basalt samples from the Moon gathered during the Apollo 17 mission hold information on the lunar magnetic field as it was 3.7 billion years ago. Its mean intensity was ~50 μT and its inclination 34 ± 10°. Such results suggest that the lunar dynamo was active at the time and was axially aligned and dipolar.</description><identifier>ISSN: 2397-3366</identifier><identifier>EISSN: 2397-3366</identifier><identifier>DOI: 10.1038/s41550-021-01469-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151/214 ; 704/445/123 ; Astronomy ; Astrophysics and Cosmology ; Basalt ; Letter ; Magnetic fields ; Magnetism ; Moon ; Paleomagnetism ; Physics ; Physics and Astronomy ; Polar wandering</subject><ispartof>Nature astronomy, 2021-12, Vol.5 (12), p.1216-1223</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e378b502edeb0817c689be4c206ec18a4ed3046c794e0d58e07b83de0e3e43f43</citedby><cites>FETCH-LOGICAL-c363t-e378b502edeb0817c689be4c206ec18a4ed3046c794e0d58e07b83de0e3e43f43</cites><orcidid>0000-0003-2947-5694 ; 0000-0003-3113-3415 ; 0000-0002-6196-4247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41550-021-01469-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41550-021-01469-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Nichols, Claire I. O.</creatorcontrib><creatorcontrib>Weiss, Benjamin P.</creatorcontrib><creatorcontrib>Getzin, Brenna L.</creatorcontrib><creatorcontrib>Schmitt, Harrison H.</creatorcontrib><creatorcontrib>Béguin, Annemarieke</creatorcontrib><creatorcontrib>Rae, Auriol S. P.</creatorcontrib><creatorcontrib>Shah, Jay</creatorcontrib><title>The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt</title><title>Nature astronomy</title><addtitle>Nat Astron</addtitle><description>Palaeomagnetic studies of Apollo samples indicate that the Moon generated a magnetic field for at least 2 billion years 1 , 2 . However, the geometry of the lunar magnetic field is still largely unknown because the original orientations of essentially all Apollo samples have not been well constrained. Determining the direction of the lunar magnetic field over time could elucidate the mechanism by which the lunar dynamo was powered and whether the Moon experienced true polar wander. Here we present measurements of the lunar magnetic field 3.7 billion years ago as recorded by Apollo 17 mare basalts 75035 and 75055. We find that 75035 and 75055 record a mean palaeointensity of ~50 μT. Furthermore, we could infer from the magnetization direction of 75055 and the layering of its parent boulder that the inclination of the magnetic field at the time was 34 ± 10°. Our recovered inclination is consistent with, but does not require, a selenocentric axial dipole (SAD) field geometry: a dipole in the centre of the Moon and aligned along the spin axis. Additionally, although true polar wander is not required by our data, true polar wander paths inferred from some independent studies of lunar hydrogen deposits and crustal magnetic anomalies 4 – 6 are consistent with our measured paleoinclination. Basalt samples from the Moon gathered during the Apollo 17 mission hold information on the lunar magnetic field as it was 3.7 billion years ago. Its mean intensity was ~50 μT and its inclination 34 ± 10°. Such results suggest that the lunar dynamo was active at the time and was axially aligned and dipolar.</description><subject>704/2151/214</subject><subject>704/445/123</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Basalt</subject><subject>Letter</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Moon</subject><subject>Paleomagnetism</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polar wandering</subject><issn>2397-3366</issn><issn>2397-3366</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouKz7BzwFPFcnH03b47L4BQuCrOeQptO1SzapSXvYf2-1gp48zcA87zvwEHLN4JaBKO-SZHkOGXCWAZOqyk5nZMFFVWRCKHX-Z78kq5QOAMCrnAnGFuR19460N85g6Lx1nTdDFzwNLR2mg_G2Qz9QN3oT6dHsPQ6dpW2HrqFtDMeJoOs-OBcoK2htknHDFblojUu4-plL8vZwv9s8ZduXx-fNeptZocSQoSjKOgeODdZQssKqsqpRWg4KLSuNxEaAVLaoJEKTlwhFXYoGAQVK0UqxJDdzbx_Dx4hp0IcwRj-91FxBlfOcMz5RfKZsDClFbHUfu6OJJ81Af-nTsz496dPf-vRpCok5lCbY7zH-Vv-T-gTR-XJt</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Nichols, Claire I. O.</creator><creator>Weiss, Benjamin P.</creator><creator>Getzin, Brenna L.</creator><creator>Schmitt, Harrison H.</creator><creator>Béguin, Annemarieke</creator><creator>Rae, Auriol S. P.</creator><creator>Shah, Jay</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2947-5694</orcidid><orcidid>https://orcid.org/0000-0003-3113-3415</orcidid><orcidid>https://orcid.org/0000-0002-6196-4247</orcidid></search><sort><creationdate>20211201</creationdate><title>The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt</title><author>Nichols, Claire I. O. ; Weiss, Benjamin P. ; Getzin, Brenna L. ; Schmitt, Harrison H. ; Béguin, Annemarieke ; Rae, Auriol S. P. ; Shah, Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e378b502edeb0817c689be4c206ec18a4ed3046c794e0d58e07b83de0e3e43f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/2151/214</topic><topic>704/445/123</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Basalt</topic><topic>Letter</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Moon</topic><topic>Paleomagnetism</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polar wandering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Claire I. O.</creatorcontrib><creatorcontrib>Weiss, Benjamin P.</creatorcontrib><creatorcontrib>Getzin, Brenna L.</creatorcontrib><creatorcontrib>Schmitt, Harrison H.</creatorcontrib><creatorcontrib>Béguin, Annemarieke</creatorcontrib><creatorcontrib>Rae, Auriol S. P.</creatorcontrib><creatorcontrib>Shah, Jay</creatorcontrib><collection>CrossRef</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Claire I. O.</au><au>Weiss, Benjamin P.</au><au>Getzin, Brenna L.</au><au>Schmitt, Harrison H.</au><au>Béguin, Annemarieke</au><au>Rae, Auriol S. P.</au><au>Shah, Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt</atitle><jtitle>Nature astronomy</jtitle><stitle>Nat Astron</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>5</volume><issue>12</issue><spage>1216</spage><epage>1223</epage><pages>1216-1223</pages><issn>2397-3366</issn><eissn>2397-3366</eissn><abstract>Palaeomagnetic studies of Apollo samples indicate that the Moon generated a magnetic field for at least 2 billion years 1 , 2 . However, the geometry of the lunar magnetic field is still largely unknown because the original orientations of essentially all Apollo samples have not been well constrained. Determining the direction of the lunar magnetic field over time could elucidate the mechanism by which the lunar dynamo was powered and whether the Moon experienced true polar wander. Here we present measurements of the lunar magnetic field 3.7 billion years ago as recorded by Apollo 17 mare basalts 75035 and 75055. We find that 75035 and 75055 record a mean palaeointensity of ~50 μT. Furthermore, we could infer from the magnetization direction of 75055 and the layering of its parent boulder that the inclination of the magnetic field at the time was 34 ± 10°. Our recovered inclination is consistent with, but does not require, a selenocentric axial dipole (SAD) field geometry: a dipole in the centre of the Moon and aligned along the spin axis. Additionally, although true polar wander is not required by our data, true polar wander paths inferred from some independent studies of lunar hydrogen deposits and crustal magnetic anomalies 4 – 6 are consistent with our measured paleoinclination. Basalt samples from the Moon gathered during the Apollo 17 mission hold information on the lunar magnetic field as it was 3.7 billion years ago. Its mean intensity was ~50 μT and its inclination 34 ± 10°. Such results suggest that the lunar dynamo was active at the time and was axially aligned and dipolar.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41550-021-01469-y</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2947-5694</orcidid><orcidid>https://orcid.org/0000-0003-3113-3415</orcidid><orcidid>https://orcid.org/0000-0002-6196-4247</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-3366
ispartof Nature astronomy, 2021-12, Vol.5 (12), p.1216-1223
issn 2397-3366
2397-3366
language eng
recordid cdi_proquest_journals_2609525212
source Springer Nature - Complete Springer Journals
subjects 704/2151/214
704/445/123
Astronomy
Astrophysics and Cosmology
Basalt
Letter
Magnetic fields
Magnetism
Moon
Paleomagnetism
Physics
Physics and Astronomy
Polar wandering
title The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20palaeoinclination%20of%20the%20ancient%20lunar%20magnetic%20field%20from%20an%20Apollo%2017%20basalt&rft.jtitle=Nature%20astronomy&rft.au=Nichols,%20Claire%20I.%20O.&rft.date=2021-12-01&rft.volume=5&rft.issue=12&rft.spage=1216&rft.epage=1223&rft.pages=1216-1223&rft.issn=2397-3366&rft.eissn=2397-3366&rft_id=info:doi/10.1038/s41550-021-01469-y&rft_dat=%3Cproquest_cross%3E2609525212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609525212&rft_id=info:pmid/&rfr_iscdi=true