Acoustically triggered mechanotherapy using genetically encoded gas vesicles

Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2021-12, Vol.16 (12), p.1403-1412
Hauptverfasser: Bar-Zion, Avinoam, Nourmahnad, Atousa, Mittelstein, David R., Shivaei, Shirin, Yoo, Sangjin, Buss, Marjorie T., Hurt, Robert C., Malounda, Dina, Abedi, Mohamad H., Lee-Gosselin, Audrey, Swift, Margaret B., Maresca, David, Shapiro, Mikhail G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1412
container_issue 12
container_start_page 1403
container_title Nature nanotechnology
container_volume 16
creator Bar-Zion, Avinoam
Nourmahnad, Atousa
Mittelstein, David R.
Shivaei, Shirin
Yoo, Sangjin
Buss, Marjorie T.
Hurt, Robert C.
Malounda, Dina
Abedi, Mohamad H.
Lee-Gosselin, Audrey
Swift, Margaret B.
Maresca, David
Shapiro, Mikhail G.
description Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body through ultrasound-induced inertial cavitation. This capability is enabled by gas vesicles, a unique class of genetically encodable air-filled protein nanostructures. We show that low-frequency ultrasound can convert these biomolecules into micrometre-scale cavitating bubbles, unleashing strong local mechanical effects. This enables engineered gas vesicles to serve as remotely actuated cell-killing and tissue-disrupting agents, and allows genetically engineered cells to lyse, release molecular payloads and produce local mechanical damage on command. We demonstrate the capabilities of biomolecular inertial cavitation in vitro, in cellulo and in vivo, including in a mouse model of tumour-homing probiotic therapy. Gas vesicles are air-filled protein nanostructures naturally expressed by certain bacteria and archaea to achieve cellular buoyancy. Here the authors show that, under the stimulation of pulsed ultrasound, targeted gas vesicles and gas vesicles expressed in genetically modified bacteria and mammalian cells release nanobubbles that, collapsing, lead to controlled mechanical damage of the surrounding biological milieu, demonstrating that, under focused ultrasound actuation, gas vesicles have potential applications as therapeutic agents.
doi_str_mv 10.1038/s41565-021-00971-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609525088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609525088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-d62ee1a18345e1de0e8cf73b50ce4966a42cfface25f1ae3b35619c39e2bf5403</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-AQ8S8Bzd7-weS_ELCl70vGw2kzQlTepuIvTfuzVtvXmagXnmneFB6JbgB4KZegycCClSTEmKsc5Iqs7QlGRcpYxpcX7qVTZBVyGsMRZUU36JJowLhblUU7Scu24Ife1s0-yS3tdVBR6KZANuZduuX4G3210yhLqtkgpaOKLQuq6IYGVD8g2hdg2Ea3RR2ibAzaHO0Ofz08fiNV2-v7wt5svUcaL7tJAUgFii4htACsCgXJmxXGAHXEtpOXVlaR1QURILLGdCEu2YBpqXgmM2Q_dj7tZ3XwOE3qy7wbfxpKESa0EFVipSdKSc70LwUJqtrzfW7wzBZi_QjAJNFGh-BZr90t0hesg3UJxWjsYiwEYgxFEbZf3d_if2Bw1nfOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609525088</pqid></control><display><type>article</type><title>Acoustically triggered mechanotherapy using genetically encoded gas vesicles</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Bar-Zion, Avinoam ; Nourmahnad, Atousa ; Mittelstein, David R. ; Shivaei, Shirin ; Yoo, Sangjin ; Buss, Marjorie T. ; Hurt, Robert C. ; Malounda, Dina ; Abedi, Mohamad H. ; Lee-Gosselin, Audrey ; Swift, Margaret B. ; Maresca, David ; Shapiro, Mikhail G.</creator><creatorcontrib>Bar-Zion, Avinoam ; Nourmahnad, Atousa ; Mittelstein, David R. ; Shivaei, Shirin ; Yoo, Sangjin ; Buss, Marjorie T. ; Hurt, Robert C. ; Malounda, Dina ; Abedi, Mohamad H. ; Lee-Gosselin, Audrey ; Swift, Margaret B. ; Maresca, David ; Shapiro, Mikhail G.</creatorcontrib><description>Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body through ultrasound-induced inertial cavitation. This capability is enabled by gas vesicles, a unique class of genetically encodable air-filled protein nanostructures. We show that low-frequency ultrasound can convert these biomolecules into micrometre-scale cavitating bubbles, unleashing strong local mechanical effects. This enables engineered gas vesicles to serve as remotely actuated cell-killing and tissue-disrupting agents, and allows genetically engineered cells to lyse, release molecular payloads and produce local mechanical damage on command. We demonstrate the capabilities of biomolecular inertial cavitation in vitro, in cellulo and in vivo, including in a mouse model of tumour-homing probiotic therapy. Gas vesicles are air-filled protein nanostructures naturally expressed by certain bacteria and archaea to achieve cellular buoyancy. Here the authors show that, under the stimulation of pulsed ultrasound, targeted gas vesicles and gas vesicles expressed in genetically modified bacteria and mammalian cells release nanobubbles that, collapsing, lead to controlled mechanical damage of the surrounding biological milieu, demonstrating that, under focused ultrasound actuation, gas vesicles have potential applications as therapeutic agents.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-021-00971-8</identifier><identifier>PMID: 34580468</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/350/2093 ; 631/61/54/152 ; 639/166/985 ; 639/925/352/2733 ; Acoustics ; Actuation ; Animals ; Archaea ; Bacteria ; Biomechanical Phenomena ; Biomolecules ; Cavitation ; Cell Line, Tumor ; Chemical compounds ; Chemistry and Materials Science ; Damage ; Female ; Gases - chemistry ; Genetic code ; Genetic engineering ; Genetic modification ; Genetic Techniques ; Humans ; Immunotherapy ; Mammalian cells ; Materials Science ; Mice ; Mice, Inbred BALB C ; Microbubbles ; Nanostructure ; Nanotechnology ; Nanotechnology and Microengineering ; Optical Imaging ; Payloads ; Pharmacology ; Probiotics ; Probiotics - pharmacology ; Proteins ; Receptors, Cell Surface - metabolism ; Tumors ; Ultrasonic imaging ; Ultrasonography ; Ultrasound ; Vesicles</subject><ispartof>Nature nanotechnology, 2021-12, Vol.16 (12), p.1403-1412</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-d62ee1a18345e1de0e8cf73b50ce4966a42cfface25f1ae3b35619c39e2bf5403</citedby><cites>FETCH-LOGICAL-c419t-d62ee1a18345e1de0e8cf73b50ce4966a42cfface25f1ae3b35619c39e2bf5403</cites><orcidid>0000-0002-4347-6901 ; 0000-0002-4266-9197 ; 0000-0002-0291-4215 ; 0000-0002-4921-6406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-021-00971-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-021-00971-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34580468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bar-Zion, Avinoam</creatorcontrib><creatorcontrib>Nourmahnad, Atousa</creatorcontrib><creatorcontrib>Mittelstein, David R.</creatorcontrib><creatorcontrib>Shivaei, Shirin</creatorcontrib><creatorcontrib>Yoo, Sangjin</creatorcontrib><creatorcontrib>Buss, Marjorie T.</creatorcontrib><creatorcontrib>Hurt, Robert C.</creatorcontrib><creatorcontrib>Malounda, Dina</creatorcontrib><creatorcontrib>Abedi, Mohamad H.</creatorcontrib><creatorcontrib>Lee-Gosselin, Audrey</creatorcontrib><creatorcontrib>Swift, Margaret B.</creatorcontrib><creatorcontrib>Maresca, David</creatorcontrib><creatorcontrib>Shapiro, Mikhail G.</creatorcontrib><title>Acoustically triggered mechanotherapy using genetically encoded gas vesicles</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body through ultrasound-induced inertial cavitation. This capability is enabled by gas vesicles, a unique class of genetically encodable air-filled protein nanostructures. We show that low-frequency ultrasound can convert these biomolecules into micrometre-scale cavitating bubbles, unleashing strong local mechanical effects. This enables engineered gas vesicles to serve as remotely actuated cell-killing and tissue-disrupting agents, and allows genetically engineered cells to lyse, release molecular payloads and produce local mechanical damage on command. We demonstrate the capabilities of biomolecular inertial cavitation in vitro, in cellulo and in vivo, including in a mouse model of tumour-homing probiotic therapy. Gas vesicles are air-filled protein nanostructures naturally expressed by certain bacteria and archaea to achieve cellular buoyancy. Here the authors show that, under the stimulation of pulsed ultrasound, targeted gas vesicles and gas vesicles expressed in genetically modified bacteria and mammalian cells release nanobubbles that, collapsing, lead to controlled mechanical damage of the surrounding biological milieu, demonstrating that, under focused ultrasound actuation, gas vesicles have potential applications as therapeutic agents.</description><subject>631/61/350/2093</subject><subject>631/61/54/152</subject><subject>639/166/985</subject><subject>639/925/352/2733</subject><subject>Acoustics</subject><subject>Actuation</subject><subject>Animals</subject><subject>Archaea</subject><subject>Bacteria</subject><subject>Biomechanical Phenomena</subject><subject>Biomolecules</subject><subject>Cavitation</subject><subject>Cell Line, Tumor</subject><subject>Chemical compounds</subject><subject>Chemistry and Materials Science</subject><subject>Damage</subject><subject>Female</subject><subject>Gases - chemistry</subject><subject>Genetic code</subject><subject>Genetic engineering</subject><subject>Genetic modification</subject><subject>Genetic Techniques</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Mammalian cells</subject><subject>Materials Science</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microbubbles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical Imaging</subject><subject>Payloads</subject><subject>Pharmacology</subject><subject>Probiotics</subject><subject>Probiotics - pharmacology</subject><subject>Proteins</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>Ultrasound</subject><subject>Vesicles</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1Lw0AQhhdRbK3-AQ8S8Bzd7-weS_ELCl70vGw2kzQlTepuIvTfuzVtvXmagXnmneFB6JbgB4KZegycCClSTEmKsc5Iqs7QlGRcpYxpcX7qVTZBVyGsMRZUU36JJowLhblUU7Scu24Ife1s0-yS3tdVBR6KZANuZduuX4G3210yhLqtkgpaOKLQuq6IYGVD8g2hdg2Ea3RR2ibAzaHO0Ofz08fiNV2-v7wt5svUcaL7tJAUgFii4htACsCgXJmxXGAHXEtpOXVlaR1QURILLGdCEu2YBpqXgmM2Q_dj7tZ3XwOE3qy7wbfxpKESa0EFVipSdKSc70LwUJqtrzfW7wzBZi_QjAJNFGh-BZr90t0hesg3UJxWjsYiwEYgxFEbZf3d_if2Bw1nfOM</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bar-Zion, Avinoam</creator><creator>Nourmahnad, Atousa</creator><creator>Mittelstein, David R.</creator><creator>Shivaei, Shirin</creator><creator>Yoo, Sangjin</creator><creator>Buss, Marjorie T.</creator><creator>Hurt, Robert C.</creator><creator>Malounda, Dina</creator><creator>Abedi, Mohamad H.</creator><creator>Lee-Gosselin, Audrey</creator><creator>Swift, Margaret B.</creator><creator>Maresca, David</creator><creator>Shapiro, Mikhail G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4347-6901</orcidid><orcidid>https://orcid.org/0000-0002-4266-9197</orcidid><orcidid>https://orcid.org/0000-0002-0291-4215</orcidid><orcidid>https://orcid.org/0000-0002-4921-6406</orcidid></search><sort><creationdate>20211201</creationdate><title>Acoustically triggered mechanotherapy using genetically encoded gas vesicles</title><author>Bar-Zion, Avinoam ; Nourmahnad, Atousa ; Mittelstein, David R. ; Shivaei, Shirin ; Yoo, Sangjin ; Buss, Marjorie T. ; Hurt, Robert C. ; Malounda, Dina ; Abedi, Mohamad H. ; Lee-Gosselin, Audrey ; Swift, Margaret B. ; Maresca, David ; Shapiro, Mikhail G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-d62ee1a18345e1de0e8cf73b50ce4966a42cfface25f1ae3b35619c39e2bf5403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/61/350/2093</topic><topic>631/61/54/152</topic><topic>639/166/985</topic><topic>639/925/352/2733</topic><topic>Acoustics</topic><topic>Actuation</topic><topic>Animals</topic><topic>Archaea</topic><topic>Bacteria</topic><topic>Biomechanical Phenomena</topic><topic>Biomolecules</topic><topic>Cavitation</topic><topic>Cell Line, Tumor</topic><topic>Chemical compounds</topic><topic>Chemistry and Materials Science</topic><topic>Damage</topic><topic>Female</topic><topic>Gases - chemistry</topic><topic>Genetic code</topic><topic>Genetic engineering</topic><topic>Genetic modification</topic><topic>Genetic Techniques</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Mammalian cells</topic><topic>Materials Science</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microbubbles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical Imaging</topic><topic>Payloads</topic><topic>Pharmacology</topic><topic>Probiotics</topic><topic>Probiotics - pharmacology</topic><topic>Proteins</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>Ultrasound</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bar-Zion, Avinoam</creatorcontrib><creatorcontrib>Nourmahnad, Atousa</creatorcontrib><creatorcontrib>Mittelstein, David R.</creatorcontrib><creatorcontrib>Shivaei, Shirin</creatorcontrib><creatorcontrib>Yoo, Sangjin</creatorcontrib><creatorcontrib>Buss, Marjorie T.</creatorcontrib><creatorcontrib>Hurt, Robert C.</creatorcontrib><creatorcontrib>Malounda, Dina</creatorcontrib><creatorcontrib>Abedi, Mohamad H.</creatorcontrib><creatorcontrib>Lee-Gosselin, Audrey</creatorcontrib><creatorcontrib>Swift, Margaret B.</creatorcontrib><creatorcontrib>Maresca, David</creatorcontrib><creatorcontrib>Shapiro, Mikhail G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bar-Zion, Avinoam</au><au>Nourmahnad, Atousa</au><au>Mittelstein, David R.</au><au>Shivaei, Shirin</au><au>Yoo, Sangjin</au><au>Buss, Marjorie T.</au><au>Hurt, Robert C.</au><au>Malounda, Dina</au><au>Abedi, Mohamad H.</au><au>Lee-Gosselin, Audrey</au><au>Swift, Margaret B.</au><au>Maresca, David</au><au>Shapiro, Mikhail G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustically triggered mechanotherapy using genetically encoded gas vesicles</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>16</volume><issue>12</issue><spage>1403</spage><epage>1412</epage><pages>1403-1412</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body through ultrasound-induced inertial cavitation. This capability is enabled by gas vesicles, a unique class of genetically encodable air-filled protein nanostructures. We show that low-frequency ultrasound can convert these biomolecules into micrometre-scale cavitating bubbles, unleashing strong local mechanical effects. This enables engineered gas vesicles to serve as remotely actuated cell-killing and tissue-disrupting agents, and allows genetically engineered cells to lyse, release molecular payloads and produce local mechanical damage on command. We demonstrate the capabilities of biomolecular inertial cavitation in vitro, in cellulo and in vivo, including in a mouse model of tumour-homing probiotic therapy. Gas vesicles are air-filled protein nanostructures naturally expressed by certain bacteria and archaea to achieve cellular buoyancy. Here the authors show that, under the stimulation of pulsed ultrasound, targeted gas vesicles and gas vesicles expressed in genetically modified bacteria and mammalian cells release nanobubbles that, collapsing, lead to controlled mechanical damage of the surrounding biological milieu, demonstrating that, under focused ultrasound actuation, gas vesicles have potential applications as therapeutic agents.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34580468</pmid><doi>10.1038/s41565-021-00971-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4347-6901</orcidid><orcidid>https://orcid.org/0000-0002-4266-9197</orcidid><orcidid>https://orcid.org/0000-0002-0291-4215</orcidid><orcidid>https://orcid.org/0000-0002-4921-6406</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2021-12, Vol.16 (12), p.1403-1412
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_journals_2609525088
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 631/61/350/2093
631/61/54/152
639/166/985
639/925/352/2733
Acoustics
Actuation
Animals
Archaea
Bacteria
Biomechanical Phenomena
Biomolecules
Cavitation
Cell Line, Tumor
Chemical compounds
Chemistry and Materials Science
Damage
Female
Gases - chemistry
Genetic code
Genetic engineering
Genetic modification
Genetic Techniques
Humans
Immunotherapy
Mammalian cells
Materials Science
Mice
Mice, Inbred BALB C
Microbubbles
Nanostructure
Nanotechnology
Nanotechnology and Microengineering
Optical Imaging
Payloads
Pharmacology
Probiotics
Probiotics - pharmacology
Proteins
Receptors, Cell Surface - metabolism
Tumors
Ultrasonic imaging
Ultrasonography
Ultrasound
Vesicles
title Acoustically triggered mechanotherapy using genetically encoded gas vesicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustically%20triggered%20mechanotherapy%20using%20genetically%20encoded%20gas%20vesicles&rft.jtitle=Nature%20nanotechnology&rft.au=Bar-Zion,%20Avinoam&rft.date=2021-12-01&rft.volume=16&rft.issue=12&rft.spage=1403&rft.epage=1412&rft.pages=1403-1412&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-021-00971-8&rft_dat=%3Cproquest_cross%3E2609525088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609525088&rft_id=info:pmid/34580468&rfr_iscdi=true