Acoustically triggered mechanotherapy using genetically encoded gas vesicles
Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific lo...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2021-12, Vol.16 (12), p.1403-1412 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1412 |
---|---|
container_issue | 12 |
container_start_page | 1403 |
container_title | Nature nanotechnology |
container_volume | 16 |
creator | Bar-Zion, Avinoam Nourmahnad, Atousa Mittelstein, David R. Shivaei, Shirin Yoo, Sangjin Buss, Marjorie T. Hurt, Robert C. Malounda, Dina Abedi, Mohamad H. Lee-Gosselin, Audrey Swift, Margaret B. Maresca, David Shapiro, Mikhail G. |
description | Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body through ultrasound-induced inertial cavitation. This capability is enabled by gas vesicles, a unique class of genetically encodable air-filled protein nanostructures. We show that low-frequency ultrasound can convert these biomolecules into micrometre-scale cavitating bubbles, unleashing strong local mechanical effects. This enables engineered gas vesicles to serve as remotely actuated cell-killing and tissue-disrupting agents, and allows genetically engineered cells to lyse, release molecular payloads and produce local mechanical damage on command. We demonstrate the capabilities of biomolecular inertial cavitation in vitro, in cellulo and in vivo, including in a mouse model of tumour-homing probiotic therapy.
Gas vesicles are air-filled protein nanostructures naturally expressed by certain bacteria and archaea to achieve cellular buoyancy. Here the authors show that, under the stimulation of pulsed ultrasound, targeted gas vesicles and gas vesicles expressed in genetically modified bacteria and mammalian cells release nanobubbles that, collapsing, lead to controlled mechanical damage of the surrounding biological milieu, demonstrating that, under focused ultrasound actuation, gas vesicles have potential applications as therapeutic agents. |
doi_str_mv | 10.1038/s41565-021-00971-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609525088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609525088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-d62ee1a18345e1de0e8cf73b50ce4966a42cfface25f1ae3b35619c39e2bf5403</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-AQ8S8Bzd7-weS_ELCl70vGw2kzQlTepuIvTfuzVtvXmagXnmneFB6JbgB4KZegycCClSTEmKsc5Iqs7QlGRcpYxpcX7qVTZBVyGsMRZUU36JJowLhblUU7Scu24Ife1s0-yS3tdVBR6KZANuZduuX4G3210yhLqtkgpaOKLQuq6IYGVD8g2hdg2Ea3RR2ibAzaHO0Ofz08fiNV2-v7wt5svUcaL7tJAUgFii4htACsCgXJmxXGAHXEtpOXVlaR1QURILLGdCEu2YBpqXgmM2Q_dj7tZ3XwOE3qy7wbfxpKESa0EFVipSdKSc70LwUJqtrzfW7wzBZi_QjAJNFGh-BZr90t0hesg3UJxWjsYiwEYgxFEbZf3d_if2Bw1nfOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609525088</pqid></control><display><type>article</type><title>Acoustically triggered mechanotherapy using genetically encoded gas vesicles</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Bar-Zion, Avinoam ; Nourmahnad, Atousa ; Mittelstein, David R. ; Shivaei, Shirin ; Yoo, Sangjin ; Buss, Marjorie T. ; Hurt, Robert C. ; Malounda, Dina ; Abedi, Mohamad H. ; Lee-Gosselin, Audrey ; Swift, Margaret B. ; Maresca, David ; Shapiro, Mikhail G.</creator><creatorcontrib>Bar-Zion, Avinoam ; Nourmahnad, Atousa ; Mittelstein, David R. ; Shivaei, Shirin ; Yoo, Sangjin ; Buss, Marjorie T. ; Hurt, Robert C. ; Malounda, Dina ; Abedi, Mohamad H. ; Lee-Gosselin, Audrey ; Swift, Margaret B. ; Maresca, David ; Shapiro, Mikhail G.</creatorcontrib><description>Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body through ultrasound-induced inertial cavitation. This capability is enabled by gas vesicles, a unique class of genetically encodable air-filled protein nanostructures. We show that low-frequency ultrasound can convert these biomolecules into micrometre-scale cavitating bubbles, unleashing strong local mechanical effects. This enables engineered gas vesicles to serve as remotely actuated cell-killing and tissue-disrupting agents, and allows genetically engineered cells to lyse, release molecular payloads and produce local mechanical damage on command. We demonstrate the capabilities of biomolecular inertial cavitation in vitro, in cellulo and in vivo, including in a mouse model of tumour-homing probiotic therapy.
Gas vesicles are air-filled protein nanostructures naturally expressed by certain bacteria and archaea to achieve cellular buoyancy. Here the authors show that, under the stimulation of pulsed ultrasound, targeted gas vesicles and gas vesicles expressed in genetically modified bacteria and mammalian cells release nanobubbles that, collapsing, lead to controlled mechanical damage of the surrounding biological milieu, demonstrating that, under focused ultrasound actuation, gas vesicles have potential applications as therapeutic agents.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-021-00971-8</identifier><identifier>PMID: 34580468</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/350/2093 ; 631/61/54/152 ; 639/166/985 ; 639/925/352/2733 ; Acoustics ; Actuation ; Animals ; Archaea ; Bacteria ; Biomechanical Phenomena ; Biomolecules ; Cavitation ; Cell Line, Tumor ; Chemical compounds ; Chemistry and Materials Science ; Damage ; Female ; Gases - chemistry ; Genetic code ; Genetic engineering ; Genetic modification ; Genetic Techniques ; Humans ; Immunotherapy ; Mammalian cells ; Materials Science ; Mice ; Mice, Inbred BALB C ; Microbubbles ; Nanostructure ; Nanotechnology ; Nanotechnology and Microengineering ; Optical Imaging ; Payloads ; Pharmacology ; Probiotics ; Probiotics - pharmacology ; Proteins ; Receptors, Cell Surface - metabolism ; Tumors ; Ultrasonic imaging ; Ultrasonography ; Ultrasound ; Vesicles</subject><ispartof>Nature nanotechnology, 2021-12, Vol.16 (12), p.1403-1412</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-d62ee1a18345e1de0e8cf73b50ce4966a42cfface25f1ae3b35619c39e2bf5403</citedby><cites>FETCH-LOGICAL-c419t-d62ee1a18345e1de0e8cf73b50ce4966a42cfface25f1ae3b35619c39e2bf5403</cites><orcidid>0000-0002-4347-6901 ; 0000-0002-4266-9197 ; 0000-0002-0291-4215 ; 0000-0002-4921-6406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-021-00971-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-021-00971-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34580468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bar-Zion, Avinoam</creatorcontrib><creatorcontrib>Nourmahnad, Atousa</creatorcontrib><creatorcontrib>Mittelstein, David R.</creatorcontrib><creatorcontrib>Shivaei, Shirin</creatorcontrib><creatorcontrib>Yoo, Sangjin</creatorcontrib><creatorcontrib>Buss, Marjorie T.</creatorcontrib><creatorcontrib>Hurt, Robert C.</creatorcontrib><creatorcontrib>Malounda, Dina</creatorcontrib><creatorcontrib>Abedi, Mohamad H.</creatorcontrib><creatorcontrib>Lee-Gosselin, Audrey</creatorcontrib><creatorcontrib>Swift, Margaret B.</creatorcontrib><creatorcontrib>Maresca, David</creatorcontrib><creatorcontrib>Shapiro, Mikhail G.</creatorcontrib><title>Acoustically triggered mechanotherapy using genetically encoded gas vesicles</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body through ultrasound-induced inertial cavitation. This capability is enabled by gas vesicles, a unique class of genetically encodable air-filled protein nanostructures. We show that low-frequency ultrasound can convert these biomolecules into micrometre-scale cavitating bubbles, unleashing strong local mechanical effects. This enables engineered gas vesicles to serve as remotely actuated cell-killing and tissue-disrupting agents, and allows genetically engineered cells to lyse, release molecular payloads and produce local mechanical damage on command. We demonstrate the capabilities of biomolecular inertial cavitation in vitro, in cellulo and in vivo, including in a mouse model of tumour-homing probiotic therapy.
Gas vesicles are air-filled protein nanostructures naturally expressed by certain bacteria and archaea to achieve cellular buoyancy. Here the authors show that, under the stimulation of pulsed ultrasound, targeted gas vesicles and gas vesicles expressed in genetically modified bacteria and mammalian cells release nanobubbles that, collapsing, lead to controlled mechanical damage of the surrounding biological milieu, demonstrating that, under focused ultrasound actuation, gas vesicles have potential applications as therapeutic agents.</description><subject>631/61/350/2093</subject><subject>631/61/54/152</subject><subject>639/166/985</subject><subject>639/925/352/2733</subject><subject>Acoustics</subject><subject>Actuation</subject><subject>Animals</subject><subject>Archaea</subject><subject>Bacteria</subject><subject>Biomechanical Phenomena</subject><subject>Biomolecules</subject><subject>Cavitation</subject><subject>Cell Line, Tumor</subject><subject>Chemical compounds</subject><subject>Chemistry and Materials Science</subject><subject>Damage</subject><subject>Female</subject><subject>Gases - chemistry</subject><subject>Genetic code</subject><subject>Genetic engineering</subject><subject>Genetic modification</subject><subject>Genetic Techniques</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Mammalian cells</subject><subject>Materials Science</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microbubbles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical Imaging</subject><subject>Payloads</subject><subject>Pharmacology</subject><subject>Probiotics</subject><subject>Probiotics - pharmacology</subject><subject>Proteins</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>Ultrasound</subject><subject>Vesicles</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1Lw0AQhhdRbK3-AQ8S8Bzd7-weS_ELCl70vGw2kzQlTepuIvTfuzVtvXmagXnmneFB6JbgB4KZegycCClSTEmKsc5Iqs7QlGRcpYxpcX7qVTZBVyGsMRZUU36JJowLhblUU7Scu24Ife1s0-yS3tdVBR6KZANuZduuX4G3210yhLqtkgpaOKLQuq6IYGVD8g2hdg2Ea3RR2ibAzaHO0Ofz08fiNV2-v7wt5svUcaL7tJAUgFii4htACsCgXJmxXGAHXEtpOXVlaR1QURILLGdCEu2YBpqXgmM2Q_dj7tZ3XwOE3qy7wbfxpKESa0EFVipSdKSc70LwUJqtrzfW7wzBZi_QjAJNFGh-BZr90t0hesg3UJxWjsYiwEYgxFEbZf3d_if2Bw1nfOM</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bar-Zion, Avinoam</creator><creator>Nourmahnad, Atousa</creator><creator>Mittelstein, David R.</creator><creator>Shivaei, Shirin</creator><creator>Yoo, Sangjin</creator><creator>Buss, Marjorie T.</creator><creator>Hurt, Robert C.</creator><creator>Malounda, Dina</creator><creator>Abedi, Mohamad H.</creator><creator>Lee-Gosselin, Audrey</creator><creator>Swift, Margaret B.</creator><creator>Maresca, David</creator><creator>Shapiro, Mikhail G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4347-6901</orcidid><orcidid>https://orcid.org/0000-0002-4266-9197</orcidid><orcidid>https://orcid.org/0000-0002-0291-4215</orcidid><orcidid>https://orcid.org/0000-0002-4921-6406</orcidid></search><sort><creationdate>20211201</creationdate><title>Acoustically triggered mechanotherapy using genetically encoded gas vesicles</title><author>Bar-Zion, Avinoam ; Nourmahnad, Atousa ; Mittelstein, David R. ; Shivaei, Shirin ; Yoo, Sangjin ; Buss, Marjorie T. ; Hurt, Robert C. ; Malounda, Dina ; Abedi, Mohamad H. ; Lee-Gosselin, Audrey ; Swift, Margaret B. ; Maresca, David ; Shapiro, Mikhail G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-d62ee1a18345e1de0e8cf73b50ce4966a42cfface25f1ae3b35619c39e2bf5403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/61/350/2093</topic><topic>631/61/54/152</topic><topic>639/166/985</topic><topic>639/925/352/2733</topic><topic>Acoustics</topic><topic>Actuation</topic><topic>Animals</topic><topic>Archaea</topic><topic>Bacteria</topic><topic>Biomechanical Phenomena</topic><topic>Biomolecules</topic><topic>Cavitation</topic><topic>Cell Line, Tumor</topic><topic>Chemical compounds</topic><topic>Chemistry and Materials Science</topic><topic>Damage</topic><topic>Female</topic><topic>Gases - chemistry</topic><topic>Genetic code</topic><topic>Genetic engineering</topic><topic>Genetic modification</topic><topic>Genetic Techniques</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Mammalian cells</topic><topic>Materials Science</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microbubbles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical Imaging</topic><topic>Payloads</topic><topic>Pharmacology</topic><topic>Probiotics</topic><topic>Probiotics - pharmacology</topic><topic>Proteins</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>Ultrasound</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bar-Zion, Avinoam</creatorcontrib><creatorcontrib>Nourmahnad, Atousa</creatorcontrib><creatorcontrib>Mittelstein, David R.</creatorcontrib><creatorcontrib>Shivaei, Shirin</creatorcontrib><creatorcontrib>Yoo, Sangjin</creatorcontrib><creatorcontrib>Buss, Marjorie T.</creatorcontrib><creatorcontrib>Hurt, Robert C.</creatorcontrib><creatorcontrib>Malounda, Dina</creatorcontrib><creatorcontrib>Abedi, Mohamad H.</creatorcontrib><creatorcontrib>Lee-Gosselin, Audrey</creatorcontrib><creatorcontrib>Swift, Margaret B.</creatorcontrib><creatorcontrib>Maresca, David</creatorcontrib><creatorcontrib>Shapiro, Mikhail G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bar-Zion, Avinoam</au><au>Nourmahnad, Atousa</au><au>Mittelstein, David R.</au><au>Shivaei, Shirin</au><au>Yoo, Sangjin</au><au>Buss, Marjorie T.</au><au>Hurt, Robert C.</au><au>Malounda, Dina</au><au>Abedi, Mohamad H.</au><au>Lee-Gosselin, Audrey</au><au>Swift, Margaret B.</au><au>Maresca, David</au><au>Shapiro, Mikhail G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustically triggered mechanotherapy using genetically encoded gas vesicles</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>16</volume><issue>12</issue><spage>1403</spage><epage>1412</epage><pages>1403-1412</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body through ultrasound-induced inertial cavitation. This capability is enabled by gas vesicles, a unique class of genetically encodable air-filled protein nanostructures. We show that low-frequency ultrasound can convert these biomolecules into micrometre-scale cavitating bubbles, unleashing strong local mechanical effects. This enables engineered gas vesicles to serve as remotely actuated cell-killing and tissue-disrupting agents, and allows genetically engineered cells to lyse, release molecular payloads and produce local mechanical damage on command. We demonstrate the capabilities of biomolecular inertial cavitation in vitro, in cellulo and in vivo, including in a mouse model of tumour-homing probiotic therapy.
Gas vesicles are air-filled protein nanostructures naturally expressed by certain bacteria and archaea to achieve cellular buoyancy. Here the authors show that, under the stimulation of pulsed ultrasound, targeted gas vesicles and gas vesicles expressed in genetically modified bacteria and mammalian cells release nanobubbles that, collapsing, lead to controlled mechanical damage of the surrounding biological milieu, demonstrating that, under focused ultrasound actuation, gas vesicles have potential applications as therapeutic agents.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34580468</pmid><doi>10.1038/s41565-021-00971-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4347-6901</orcidid><orcidid>https://orcid.org/0000-0002-4266-9197</orcidid><orcidid>https://orcid.org/0000-0002-0291-4215</orcidid><orcidid>https://orcid.org/0000-0002-4921-6406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2021-12, Vol.16 (12), p.1403-1412 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_journals_2609525088 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature |
subjects | 631/61/350/2093 631/61/54/152 639/166/985 639/925/352/2733 Acoustics Actuation Animals Archaea Bacteria Biomechanical Phenomena Biomolecules Cavitation Cell Line, Tumor Chemical compounds Chemistry and Materials Science Damage Female Gases - chemistry Genetic code Genetic engineering Genetic modification Genetic Techniques Humans Immunotherapy Mammalian cells Materials Science Mice Mice, Inbred BALB C Microbubbles Nanostructure Nanotechnology Nanotechnology and Microengineering Optical Imaging Payloads Pharmacology Probiotics Probiotics - pharmacology Proteins Receptors, Cell Surface - metabolism Tumors Ultrasonic imaging Ultrasonography Ultrasound Vesicles |
title | Acoustically triggered mechanotherapy using genetically encoded gas vesicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustically%20triggered%20mechanotherapy%20using%20genetically%20encoded%20gas%20vesicles&rft.jtitle=Nature%20nanotechnology&rft.au=Bar-Zion,%20Avinoam&rft.date=2021-12-01&rft.volume=16&rft.issue=12&rft.spage=1403&rft.epage=1412&rft.pages=1403-1412&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-021-00971-8&rft_dat=%3Cproquest_cross%3E2609525088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609525088&rft_id=info:pmid/34580468&rfr_iscdi=true |